【題目】設(shè)函數(shù)f(x)=Asin(ωx+φ)(A,ω,φ為常數(shù),且A>0,ω>0,0<φ<π)的部分圖象如圖所示.

(1)求A,ω,φ的值;
(2)設(shè)θ為銳角,且f(θ)=﹣ ,求f(θ﹣ )的值.

【答案】
(1)解:由圖象,得

∵最小正周期 ,

,

,

,得 ,k∈Z,

,k∈Z,

∵0<φ<π,


(2)解:由 ,得 ,

,

,

又∵

,

= =


【解析】(1)由圖象可得A,最小正周期T,利用周期公式可求ω,由 ,得 ,k∈Z,結(jié)合范圍0<φ<π,可求φ的值(2)由已知可求 ,由 ,結(jié)合 ,可得范圍 ,利用同角三角函數(shù)基本關(guān)系式可求cos(2θ+ )的值,利用兩角差的正弦函數(shù)公式即可計(jì)算得解.
【考點(diǎn)精析】利用函數(shù)y=Asin(ωx+φ)的圖象變換對(duì)題目進(jìn)行判斷即可得到答案,需要熟知圖象上所有點(diǎn)向左(右)平移個(gè)單位長(zhǎng)度,得到函數(shù)的圖象;再將函數(shù)的圖象上所有點(diǎn)的橫坐標(biāo)伸長(zhǎng)(縮短)到原來(lái)的倍(縱坐標(biāo)不變),得到函數(shù)的圖象;再將函數(shù)的圖象上所有點(diǎn)的縱坐標(biāo)伸長(zhǎng)(縮短)到原來(lái)的倍(橫坐標(biāo)不變),得到函數(shù)的圖象.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)f(x)= (a>b>0)的圖象是曲線C.

(1)在如圖的坐標(biāo)系中分別做出曲線C的示意圖,并分別標(biāo)出曲線C與x軸的左、右交點(diǎn)A1 , A2
(2)設(shè)P是曲線C上位于第一象限的任意一點(diǎn),過A2作A2R⊥A1P于R,設(shè)A2R與曲線C交于Q,求直線PQ斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,設(shè)是橢圓的左焦點(diǎn),點(diǎn)軸上的一點(diǎn),點(diǎn)為橢圓的左、右頂點(diǎn),已知,且

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)過點(diǎn)作直線交橢圓于兩點(diǎn),試判定直線的斜率之和是否為定值,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)數(shù)列{an}的前n項(xiàng)和為Sn , 且滿足Sn=2﹣an , n=1,2,3,….
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列{bn}滿足b1=1,且bn+1=bn+an , 求數(shù)列{bn}的通項(xiàng)公式;
(3)設(shè)cn= ,數(shù)列{cn}的前n項(xiàng)和為Tn= .求n.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在數(shù)列{an}中,a1=﹣2101 , 且當(dāng)2≤n≤100時(shí),an+2a102n=3×2n恒成立,則數(shù)列{an}的前100項(xiàng)和S100=

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,有一塊矩形空地ABCD,AB=2km,BC=4km,根據(jù)周邊環(huán)境及地形實(shí)際,當(dāng)?shù)卣?guī)劃在該空地內(nèi)建一個(gè)箏形商業(yè)區(qū)AEFG,箏形的頂點(diǎn)A,E,F(xiàn),G為商業(yè)區(qū)的四個(gè)入口,其中入口F在邊BC上(不包含頂點(diǎn)),入口E,G分別在邊AB,AD上,且滿足點(diǎn)A,F(xiàn)恰好關(guān)于直線EG對(duì)稱,矩形內(nèi)箏形外的區(qū)域均為綠化區(qū).

(1)請(qǐng)確定入口F的選址范圍;
(2)設(shè)商業(yè)區(qū)的面積為S1 , 綠化區(qū)的面積為S2 , 商業(yè)區(qū)的環(huán)境舒適度指數(shù)為 ,則入口F如何選址可使得該商業(yè)區(qū)的環(huán)境舒適度指數(shù)最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】提高過江大橋的車輛通行能力可改善整個(gè)城市的交通狀況,在一般情況下,大橋上的車流速度v(單位:千米/小時(shí))是車流密度x(單位:輛/千米)的函數(shù),當(dāng)橋上的車流密度達(dá)到200輛/千米時(shí),造成堵塞,此時(shí)車流速度為0;當(dāng)車流密度不超過20輛/千米時(shí),車流速度為60千米/小時(shí),研究表明:當(dāng)20≤x≤200時(shí),車流速度v是車流密度x的一次函數(shù).
(1)當(dāng)0≤x≤200時(shí),求函數(shù)v(x)的表達(dá)式;
(2)當(dāng)車流密度x為多大時(shí),車流量(單位時(shí)間內(nèi)通過橋上某觀測(cè)點(diǎn)的車輛數(shù),單位:輛/小時(shí))f(x)=xv(x)可以達(dá)到最大,并求出最大值.(精確到1輛/小時(shí)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】給出下列命題:

存在每個(gè)面都是直角三角形的四面體;

若三棱錐的三條側(cè)棱兩兩垂直,則其三個(gè)側(cè)面也兩兩垂直;

棱臺(tái)的側(cè)棱延長(zhǎng)后交于一點(diǎn);

用一個(gè)平面去截棱錐,棱錐底面和截面之間的部分是棱臺(tái);

其中正確命題的個(gè)數(shù)是  

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=x+xlnx,若k∈Z,且k(x﹣1)<f(x)對(duì)任意的x>1恒成立,則k的最大值為(
A.2
B.3
C.4
D.5

查看答案和解析>>

同步練習(xí)冊(cè)答案