11.執(zhí)行如圖所示的程序框圖,輸出的結果為(  )
A.34B.55C.89D.144

分析 分析程序中各變量、各語句的作用,再根據(jù)流程圖所示的順序,可知:該程序的作用是利用循環(huán)計算循環(huán)變量x,y,z的值,并輸出滿足z>100的值.

解答 解:程序在運行過程中各變量的值如下表示:
x y z 是否繼續(xù)循環(huán).
循環(huán)前   1 1 2 是
第一圈   1 2 3 是
第二圈   2 3 5 是
第三圈   3 5 8 是
第4圈   5 8 13 是
第5圈   8 13 21 是
第6圈   13 21 34 是
第7圈  21 34 55 是
第8圈  34 55 89 是
第9圈  55 89 144 否.
故選:C.

點評 本題考查的知識點是程序框圖,在判斷程序框圖的運行結果時,模擬程序運行是常用的方法.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

1.已知函數(shù)f(x)=2+alog2x+blog3x,且f($\frac{1}{2016}$)=4,則f(2016)的值為0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.已知A(1,3),B(2,4),$\overrightarrow{a}$=(2x-1,x2+3x-3),且$\overrightarrow{a}$=$\overrightarrow{AB}$,則x=1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.設全集U={1,2,3,4,5},∁U(A∪B)={1},A∩(∁UB)={3},則集合B=( 。
A.{1,2,4,5}B.{2,4,5}C.{2,3,4}D.{3,4,5}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.如圖,P為圓M:(x-$\sqrt{3}$)2+y2=24上的動點,定點Q(-$\sqrt{3}$,0),線段PQ的垂直平分線交線段MP于點N.
(Ⅰ)求動點N的軌跡方程;
(Ⅱ)記動點N的軌跡為曲線C,設圓O:x2+y2=2的切線l交曲線C于A,B兩點,求|OA|•|OB|的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.已知函數(shù)f(x)是R上的增函數(shù),且f(sinω)+f(-cosω)>f(-sinω)+f(cosω),其中ω是銳角,并且使得g(x)=sin(ωx+$\frac{π}{4}$)在($\frac{π}{2}$,π)上單調遞減,則ω的取值范圍是(  )
A.($\frac{π}{4}$,$\frac{5}{4}$]B.[$\frac{5}{4}$,$\frac{π}{2}$)C.[$\frac{1}{2}$,$\frac{π}{4}$)D.[$\frac{1}{2}$,$\frac{5}{4}$]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.已知(ax+1)6的二項展開式中含x3項的系數(shù)為$\frac{5}{2}$,則a的值是(  )
A.$\frac{1}{8}$B.$\frac{1}{4}$C.$\frac{1}{2}$D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.設函數(shù)f(x)=x2ln(-x+$\sqrt{{x^2}+1}}$)+1,若f(a)=11,則f(-a)=-9.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知等差數(shù)列{an}的首項為a,公差為d,且不等式ax2-3x+2<0的解集為(1,d).
(1)求數(shù)列{an}的通項公式an
(2)若bn=3an+an-1,求數(shù)列{bn}前n項和Tn

查看答案和解析>>

同步練習冊答案