A. | $-\frac{117}{125}$ | B. | $\frac{3}{5}$ | C. | $-\frac{117}{125}$或$\frac{3}{5}$ | D. | $\frac{117}{125}$ |
分析 利用同角三角函數(shù)的基本關(guān)系求得cosα的值,由題意求得范圍π>α+β>$\frac{π}{2}$,從而可求cos(α+β)的值,進而可求cosβ的值,再利用二倍角的余弦公式求得cos2β 的值.
解答 解:α、β都是銳角,且sinα=$\frac{{2\sqrt{5}}}{5}$,sin(α+β)=$\frac{3}{5}$,
∴cosα=$\sqrt{1-si{n}^{2}α}$=$\frac{\sqrt{5}}{5}$,cos(α+β)=$\sqrt{1-si{n}^{2}(α+β)}$=±$\frac{4}{5}$,
∴sin(α+β)=sinαcosβ+cosαsinβ=$\frac{\sqrt{5}}{5}$(2cosβ+sinβ)=$\frac{3}{5}$,
∴2cosβ+sinβ=$\frac{3\sqrt{5}}{5}$,①
∵cosα=$\frac{\sqrt{5}}{5}$,α>$\frac{π}{3}$,
∵$\frac{\sqrt{2}}{2}$>sin(α+β)=$\frac{3}{5}$>$\frac{1}{2}$,
∴π>α+β>$\frac{π}{2}$,
∴cos(α+β)=-$\frac{4}{5}$,
∴cosαcosβ-sinαsinβ=-$\frac{4}{5}$,
$\frac{\sqrt{5}}{5}$(cosβ-2sinβ)=-$\frac{4}{5}$,
∴cosβ-2sinβ=-$\frac{4\sqrt{5}}{5}$,②
解①②,得cosβ=$\frac{2\sqrt{5}}{25}$,
∴cos2β=2cos2β-1=-$\frac{117}{125}$.
故選:A.
點評 本題主要考查同角三角函數(shù)的基本關(guān)系,兩角差的余弦公式、二倍角的余弦公式的應(yīng)用,屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | 2 | C. | -2 | D. | -1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | 1 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | p∧q | B. | p∨(?q) | C. | (?p)∧q | D. | (?p)∧(?q) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0.04 | B. | 0.64 | C. | 0.86 | D. | 0.96 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{4}{3}$$\sqrt{22}$ | B. | $\frac{4}{3}$$\sqrt{66}$ | C. | $\sqrt{66}$ | D. | 4$\sqrt{66}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
成績等級 | A | B | C | D | E |
成績(分) | 100 | 85 | 70 | 60 | 50以下 |
人數(shù)(名) | 1 | a | b | 8 | c |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com