分析 (1)可得A點縱坐標為$\frac{4}{5}$,由三角函數(shù)的定義可得tanα=$\frac{4}{3}$,由誘導(dǎo)公式可得;
(2)由題意可得tan∠COB=-$\frac{3}{4}$,進而可得B(-$\frac{4}{5}$,-$\frac{3}{5}$),由兩點之間的距離公式可得.
解答 解:(1)當(dāng)A點的橫坐標為$\frac{3}{5}$時,縱坐標為$\frac{4}{5}$,
∴由三角函數(shù)的定義可得tanα=$\frac{4}{3}$,
∴tan(540°-α)=tan(180°×3-α)=-tanα=-$\frac{4}{3}$;
(2)∵tan(α+60°)=tan∠COB=-$\frac{3}{4}$,
∴B(-$\frac{4}{5}$,-$\frac{3}{5}$),又C(1,0),
∴B、C兩點之間的距離為$\sqrt{(-\frac{4}{5}-1)^{2}+(-\frac{3}{5}-0)^{2}}$=$\frac{3\sqrt{10}}{25}$
點評 本題考查三角函數(shù)的定義,涉及兩點間的距離公式,屬基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{3}$ | B. | -$\frac{1}{3}$ | C. | 3 | D. | -3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 最大值為$\frac{8}{{e}^{2}}$ | B. | 最大值為$\frac{4}{{e}^{2}}$ | C. | 最小值為$\frac{8}{{e}^{2}}$ | D. | 最小值為$\frac{4}{{e}^{2}}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (1,2) | B. | ($\frac{3}{4}$,1) | C. | ($\frac{2}{3}$,$\frac{3}{4}$) | D. | (0,$\frac{2}{3}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com