14.若sinα=-$\frac{\sqrt{10}}{10}$,且α為第四象限角,則tanα的值等于(  )
A.$\frac{1}{3}$B.-$\frac{1}{3}$C.3D.-3

分析 由sinα的值及α為第四象限角,利用同角三角函數(shù)間的基本關(guān)系求出cosα的值,即可確定出tanα的值.

解答 解:∵sinα=-$\frac{\sqrt{10}}{10}$,且α為第四象限角,
∴cosα=$\sqrt{1-si{n}^{2}α}$=$\frac{3\sqrt{10}}{10}$,
則tanα=-$\frac{1}{3}$,
故選:B.

點(diǎn)評(píng) 此題考查了同角三角函數(shù)基本關(guān)系的運(yùn)用,熟練掌握基本關(guān)系是解本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知直線$x=\frac{π}{3}$過函數(shù)f(x)=sin(2x+φ)(其中$-\frac{π}{2}<φ<\frac{π}{2}$)圖象上的一個(gè)最高點(diǎn),則$f(\frac{5π}{6})$的值為-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c.且cosB=-$\frac{1}{2}$.
(Ⅰ)若a=2,b=2$\sqrt{3}$,求角C;
(Ⅱ)求sinA•sinC的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.下列函數(shù)中,是偶函數(shù)且在區(qū)間(0,+∞)上是減函數(shù)的是( 。
A.$f(x)=\frac{1}{x^2}$B.f(x)=x2C.$f(x)=\frac{1}{x}$D.f(x)=lnx

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知函數(shù)$f(x)=\left\{{\begin{array}{l}{|{{log}_2}x|,}&{(0<x<4)}\\{-\frac{1}{2}x+6,}&{(x≥4)}\end{array}}\right.$,若方程f(x)-k=0有三個(gè)不同的解a,b,c,且a<b<c,則ab+c的取值范圍是(11,13).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.若x,y滿足$\left\{\begin{array}{l}{2x-y≥0}\\{y≥x}\\{4x+4y≤9}\end{array}\right.$,則z=2x+y的最大值為$\frac{27}{8}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.對(duì)任意$x∈({0,\frac{π}{2}})$,不等式sinx•f(x)<cosx•f′(x)恒成立,則下列不等式錯(cuò)誤的是( 。
A.$f({\frac{π}{3}})>\sqrt{2}f({\frac{π}{4}})$B.$f({\frac{π}{3}})>2cos1•f(1)$C.$f({\frac{π}{4}})<\sqrt{2}cos1•f(1)$D.$f({\frac{π}{4}})<\frac{{\sqrt{6}}}{2}f({\frac{π}{6}})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.利用三角函數(shù)線求滿足tanα≥$\frac{\sqrt{3}}{3}$的角α的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知A,B是單位圓O上的動(dòng)點(diǎn),且A,B分別在第一,二象限.C是圓與x軸正半軸的交點(diǎn),△AOB為正三角形,記∠AOC=α
(1)若A點(diǎn)的橫坐標(biāo)為$\frac{3}{5}$,求tan(540°-α)的值;
(2)若tan(α+60°)=-$\frac{3}{4}$,求B、C兩點(diǎn)之間的距離.

查看答案和解析>>

同步練習(xí)冊(cè)答案