分析 (1)根據(jù)a=1,可得-x2+3x-2≥0,即x2-3x+2≤0,可求x的范圍,得到集合A,根據(jù)指數(shù)的性質(zhì),可得值域,得到集合B.
(2)根據(jù)A∪B=B,即A⊆B,建立條件關(guān)系即可求實數(shù)a的取值范圍.
解答 解:(1)當a=1時,由題意得-x2+3x-2≥0,即x2-3x+2≤0,
解得:1≤x≤2,
∴集合A=[1,2],
由函數(shù)g(x)=2x-1(x≤2),可知函數(shù)g(x)在(-∞,2]上單調(diào)遞增,
∴-1≤2x-1≤3,
∴集合B=(-1,3].
(2)∵A∪B=B,
∴A⊆B,
由題意得-x2+(a+2)x-a-1≥0
得x2-(a+2)x+a+1≤0,即(x-1)[x-(a+1)]≤0,
由方程(x-1)[x-(a+1)]=0,
可得:x1=1,x2=a+1
∵a>0,
∴不等式的解集為[1,a+1],即集合A=[1,a+1],
由A⊆B,
∴a+1≤3,
∴a≤2,
故得實數(shù)a的取值范圍是{a|0<a≤2}.
點評 本題主要考查不等式的計算以及集合的基本運算,屬于基礎(chǔ)題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | b>c>a | B. | a>c>b | C. | c>b>a | D. | a>b>c |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | f(x)=-2-x-8x-6 | B. | f(x)=-2-x-8x+6 | C. | f(x)=2-x+8x+6 | D. | f(x)=-2-x+8x-6 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | [0,2] | B. | [0,1] | C. | [-1,1) | D. | (-1,2] |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | y=x+$\frac{4}{x}$ | B. | y=sinx+$\frac{4}{sinx}$(0<x<π) | ||
C. | y=ex+4e-x | D. | y=log3x+4logx3 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com