7.程序框圖的算法思路源于我國(guó)古代數(shù)學(xué)名著《九章算術(shù)》中的“更相減損術(shù)”,執(zhí)行該程序框圖(如圖),若輸入的a,b分別為21和33,則輸出的a=( 。
A.2B.3C.7D.13

分析 由循環(huán)結(jié)構(gòu)的特點(diǎn),先判斷,再執(zhí)行,分別計(jì)算出當(dāng)前的a,b的值,即可得到結(jié)論.

解答 解:由a=21,b=33,a<b,
則b變?yōu)?3-21=12,
由a>b,則a變?yōu)?1-12=9,
由b>a,則b變?yōu)?2-9=3,
由a>b,則a變?yōu)?-3=6,
由a>b,則a變?yōu)?-3=3,
由a=b=3,
則輸出的a=3.
故選:B.

點(diǎn)評(píng) 本題考查算法和程序框圖,主要考查循環(huán)結(jié)構(gòu)的理解和運(yùn)用,以及賦值語(yǔ)句的運(yùn)用,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.設(shè)p:方程$\frac{{x}^{2}}{5}$+$\frac{{y}^{2}}{m}$=1表示是焦點(diǎn)在y軸上的橢圓;q:方程$\frac{{x}^{2}}{5}$-$\frac{{y}^{2}}{m}$=1表示雙曲線,求使“¬p∧q”為真命題的實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.若點(diǎn)M在直線l上,l在平面α內(nèi),則M,l,α間的上關(guān)系為(  )
A.M∈l,l∈αB.M∈l,l?αC.M?l,l?αD.M?l,l∈α

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.下面命題正確的是( 。
A.已知直線l,點(diǎn)A∈l,直線m?α,A∉m,則l與m異面
B.已知直線m?α,直線l∥m,則l∥α
C.已知平面α、β,直線n⊥α,直線n⊥β,則α∥β
D.若直線a、b與α所成的角相等,則a∥b

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知函數(shù)f(x)=x2-ax,g(x)=lnx.
(1);令F(x)=f(x)-g(x),求F(x)的單調(diào)區(qū)間;
(2)設(shè)r(x)=f(x)+g($\frac{1+ax}{2}$)對(duì)任意a∈(1,2),總存在x∈[$\frac{1}{2}$,1]使不等式r(x)>k(1-a2)成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.已知等差數(shù)列{an}中,有$\frac{{{a_{n+1}}+{a_{n+2}}+…+{a_{2n}}}}{n}=\frac{{{a_1}+{a_2}+…+{a_{3n}}}}{3n}$成立.類似地,在等比數(shù)列{bn}中,
有${\;}^n\sqrt{{a_{n+1}}{a_{n+2}}…{a_{2n}}}={\;}^{3n}\sqrt{{a_1}{a_2}…{a_{3n}}}$成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.點(diǎn)(7,-4)到拋物線y2=16x的焦點(diǎn)的距離是5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.下列函數(shù)中與函數(shù)y=x為同一函數(shù)的是( 。
A.y=$\sqrt{{x}^{2}}$B.y=($\sqrt{x}$)2C.y=$\frac{{x}^{2}}{x}$D.y=lg10x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知△ABC的三個(gè)內(nèi)角分別為A,B,C,且A≠$\frac{π}{2}$.
(Ⅰ)化簡(jiǎn)$\frac{sin(\frac{3π}{2}+A)•cos(\frac{π}{2}-A)}{cos(B+C)•tan(π+A)}$;
(Ⅱ)若角A滿足sinA+cosA=$\frac{1}{5}$.
(i) 試判斷△ABC是銳角三角形還是鈍角三角形,并說(shuō)明理由;
(ii) 求tanA的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案