17.某小區(qū)60%居民訂晚報(bào),45%訂青年報(bào),30%兩報(bào)均訂,隨機(jī)抽一戶,則至少訂一種報(bào)的概率為( 。
A.$\frac{1}{10}$B.$\frac{3}{10}$C.$\frac{1}{4}$D.$\frac{3}{4}$

分析 設(shè)事件A表示“小區(qū)居民訂晚報(bào)”,B表示“小區(qū)居民訂青年報(bào)”,隨機(jī)抽一戶,則至少訂一種報(bào)的概率為:P(A∪B)=P(A)+P(B)-P(AB),由此能求出結(jié)果.

解答 解:設(shè)事件A表示“小區(qū)居民訂晚報(bào)”,B表示“小區(qū)居民訂青年報(bào)”,
則P(A)=0.6,P(B)=0.45,P(AB)=0.3,
∴隨機(jī)抽一戶,則至少訂一種報(bào)的概率為:
P(A∪B)=P(A)+P(B)-P(AB)
=0.6+0.45-0.3
=0.75=$\frac{3}{4}$.
故選:D.

點(diǎn)評(píng) 本題考查概率的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意概率加法公式的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.如圖為一個(gè)觀覽車示意圖.該觀覽車圓半徑為4.8m,圓上最低點(diǎn)與地面距離為0.8m,60秒轉(zhuǎn)動(dòng)一圈.圖中OA與地面垂直,現(xiàn)以O(shè)A為始邊,逆時(shí)針轉(zhuǎn)動(dòng)θ角到OB,設(shè)B點(diǎn)與地面的距離為h.
(1)求h與θ的函數(shù)解析式;
(2)設(shè)從OA開始轉(zhuǎn)動(dòng),經(jīng)過(guò)t秒到達(dá)OB,求h與t的函數(shù)解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.在(x-$\frac{m}{x}$)4的展開式中,x2的系數(shù)為8,則實(shí)數(shù)m的值是( 。
A.-2B.-4C.2D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.某客運(yùn)部門規(guī)定甲、乙兩地之間旅客托運(yùn)行李的費(fèi)用為:不超過(guò)25kg按0.5元/kg收費(fèi),超過(guò)25kg的部分按0.8元/kg收費(fèi),計(jì)算收費(fèi)的程序框圖如圖所示,則①②處應(yīng)填( 。
A.y=0.8x    y=0.5xB.y=0.5x    y=0.8x
C.y=25×0.5+(x-25)×0.8    y=0.5xD.y=25×0.5+0.8x    y=0.8x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知函數(shù)f(x)=2cos(π-$\frac{x}{2}$)•tan(π-$\frac{x}{2}$)•cos$\frac{x}{2}$,-$\frac{π}{2}$≤x≤$\frac{π}{2}$.
(1)求f($\frac{π}{2}$)的值;
(2)判斷函數(shù)是否是偶函數(shù)(請(qǐng)直接給出結(jié)論);
(3)求f(2x)在區(qū)間[-$\frac{π}{6}$,$\frac{π}{2}$]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.過(guò)點(diǎn)P(2,2)作直線l交x,y正半軸于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn),當(dāng)|OA|+|OB|取到最小值時(shí),直線l的方程是( 。
A.x+y-4=0B.x-y+4=0C.2x+y-6=0D.x+2y-6=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的一個(gè)焦點(diǎn)為F(2,0),且雙曲線的漸近線與圓(x-2)2+y2=3相切,則雙曲線的方程為${x}^{2}-\frac{{y}^{2}}{3}=1$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.函數(shù)f(x)=loga(1-x)+loga(x+3)(0<a<1).
(1)求方程f(x)=0的解.
(2)若函數(shù)f(x)的最小值為-1,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.已知$\overrightarrow a$=(m,4),$\overrightarrow b$=(2,m-1),滿足|$\overrightarrow a$+$\overrightarrow b$|2=|$\overrightarrow a$|2+|$\overrightarrow b$|2,則m=$\frac{2}{3}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案