A. | $0<m≤\frac{1}{3}$ | B. | $0<m<\frac{1}{2}$ | C. | $\frac{1}{2}<m≤1$ | D. | $\frac{1}{3}<m<1$ |
分析 由條件求得當(dāng) x∈(-1,0)時,f(x)的解析式,根據(jù)題意可得y=f(x)與y=mx+2m的圖象有兩個交點,數(shù)形結(jié)合求得實數(shù)m的取值范圍.
解答 解:∵f(x)+1=$\frac{1}{f(x+1)}$,
當(dāng)x∈[0,1]時,f(x)=x,
∴x∈(-1,0)時,f(x)+1=$\frac{1}{f(x+1)}$=$\frac{1}{x+1}$,
∴f(x)=$\frac{1}{x+1}$-1,
因為g(x)=f(x)-mx-2m有兩個零點,
所以y=f(x)與y=mx+2m的圖象有兩個交點,
根據(jù)圖象可得,當(dāng)0<m≤$\frac{1}{3}$時,兩函數(shù)有兩個交點,
故選:A.
點評 本題考查了利用函數(shù)零點的存在性求變量的取值范圍和代入法求函數(shù)解析式,體現(xiàn)了轉(zhuǎn)化的思想,以及利用函數(shù)圖象解決問題的能力,體現(xiàn)了數(shù)形結(jié)合的思想.也考查了學(xué)生創(chuàng)造性分析解決問題的能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,0) | B. | (0,1] | C. | (0,+∞) | D. | [0,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com