9.奇函數(shù)f(x)的定義域?yàn)镽,若f(x+1)為偶函數(shù),且f(1)=2,則f(4)+f(5)的值為( 。
A.2B.1C.-1D.-2

分析 根據(jù)函數(shù)的奇偶性的性質(zhì),得到f(x+4)=f(x),即可得到結(jié)論.

解答 解:∵f(x+1)為偶函數(shù),f(x)是奇函數(shù),
∴設(shè)g(x)=f(x+1),
則g(-x)=g(x),
即f(-x+1)=f(x+1),
∵f(x)是奇函數(shù),
∴f(-x+1)=f(x+1)=-f(x-1),
即f(x+2)=-f(x),f(x+4)=f(x+2+2)=-f(x+2)=f(x),
則f(4)=f(0)=0,f(5)=f(1)=2,
∴f(4)+f(5)=0+2=2,
故選:A.

點(diǎn)評(píng) 本題主要考查函數(shù)值的計(jì)算,利用函數(shù)奇偶性的性質(zhì),得到函數(shù)的對(duì)稱軸是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的離心率為$\frac{{\sqrt{3}}}{2}$,$P(\sqrt{2},\frac{{\sqrt{2}}}{2})$在橢圓C上.
(Ⅰ) 求橢圓C的方程;
(Ⅱ)直線l與橢圓C交于不同的兩點(diǎn)M、N,O為坐標(biāo)原點(diǎn),且kOM•kON=-$\frac{b^2}{a^2}$.
(。┣笞C:△OMN的面積為定值;
(ⅱ)求$\overrightarrow{OM}•\overrightarrow{ON}$的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知橢圓C中心在原點(diǎn),焦點(diǎn)在坐標(biāo)軸上,且該橢圓經(jīng)過(guò)點(diǎn)($\frac{1}{2}$,$\frac{\sqrt{6}}{2}$)和點(diǎn)$(\frac{{\sqrt{2}}}{2},-1)$.求
(1)橢圓C的方程;
(2)P,Q,M,N四點(diǎn)在橢圓C上,F(xiàn)1為負(fù)半軸上的焦點(diǎn),直線PQ,MN都過(guò)F1且$\overrightarrow{M{F_1}}•\overrightarrow{Q{F_1}}=0$,求四邊形PMQN的面積最小值和最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知函數(shù)f(x)為奇函數(shù),當(dāng)x≥0時(shí),f(x)=log2(x+l)+m,則f(1-$\sqrt{2}$)的值為( 。
A.-$\frac{1}{2}$B.-log2(2-$\sqrt{2}$)C.$\frac{1}{2}$D.log2(2-$\sqrt{2}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知全集U={y|y=x3,x=-1,0,1,2},集合A={-1,1},B={1,8},則A∩(∁UB)=(  )
A.{-1,1}B.{-1}C.{1}D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知函數(shù)f(x)=|2x-3|,g(x)=x-1.
(1)求不等式f(x)≤|g(x)|的解集;
(2)求不等式f(x)≤g(x)的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.如圖,將矩形紙片的右下角折起,使得該角的頂點(diǎn)落在矩形的左邊上,那么折痕長(zhǎng)度l取決于角θ的大小,探求l,θ之間的關(guān)系式,并導(dǎo)出用θ表示l的函數(shù)表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.求函數(shù)y=$\frac{x+1}{(x+5)(x+2)}$(x>-1)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知函數(shù)y=lg(1-2cos2x)
①求函數(shù)的最小正周期.
②定義域和值域.
③判斷函數(shù)的奇偶性.
④求函數(shù)的單調(diào)區(qū)間.

查看答案和解析>>

同步練習(xí)冊(cè)答案