【題目】已知數(shù)列{an}是等差數(shù)列,Sn為{an}的前n項(xiàng)和,且a10=19,S10=100;數(shù)列{bn}對(duì)任意n∈N* , 總有b1b2b3…bn﹣1bn=an+2成立.
(1)求數(shù)列{an}和{bn}的通項(xiàng)公式;
(2)記cn=(﹣1)n ,求數(shù)列{cn}的前n項(xiàng)和Tn .
【答案】
(1)
解:設(shè){an}的公差為d,
則a10=a1+9d=19, ,
解得a1=1,d=2,所以an=2n﹣1,
所以b1b2b3…bn﹣1bn=2n+1…①
當(dāng)n=1時(shí),b1=3,
當(dāng)n≥2時(shí),b1b2b3…bn﹣1=2n﹣1…②
①②兩式相除得
因?yàn)楫?dāng)n=1時(shí),b1=3適合上式,所以 .
(2)
解:由已知 ,
得
則Tn=c1+c2+c3+…+cn= ,
當(dāng)n為偶數(shù)時(shí),
=
= ,
當(dāng)n為奇數(shù)時(shí),
=
= .
綜上: .
【解析】(1)由題意和等差數(shù)列的前n項(xiàng)和公式求出公差,代入等差數(shù)列的通項(xiàng)公式化簡(jiǎn)求出an , 再化簡(jiǎn)b1b2b3…bn﹣1bn=an+2,可得當(dāng)n≥2時(shí)b1b2b3…bn﹣1=2n﹣1,將兩個(gè)式子相除求出bn;(2)由(1)化簡(jiǎn)cn=(﹣1)n ,再對(duì)n分奇數(shù)和偶數(shù)討論,分別利用裂項(xiàng)相消法求出Tn , 最后要用分段函數(shù)的形式表示出來(lái).
【考點(diǎn)精析】本題主要考查了等差數(shù)列的前n項(xiàng)和公式和數(shù)列的前n項(xiàng)和的相關(guān)知識(shí)點(diǎn),需要掌握前n項(xiàng)和公式:;數(shù)列{an}的前n項(xiàng)和sn與通項(xiàng)an的關(guān)系
才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司的廣告費(fèi)支出x與銷(xiāo)售額y(單位:萬(wàn)元)之間有下列對(duì)應(yīng)數(shù)據(jù)
x | 2 | 4 | 5 | 6 | 8 |
y | 30 | 40 | 60 | 50 | 70 |
回歸方程為 =bx+a,其中b=
,a=
﹣b
.
(1)畫(huà)出散點(diǎn)圖,并判斷廣告費(fèi)與銷(xiāo)售額是否具有相關(guān)關(guān)系;
(2)根據(jù)表中提供的數(shù)據(jù),求出y與x的回歸方程 =bx+a;
(3)預(yù)測(cè)銷(xiāo)售額為115萬(wàn)元時(shí),大約需要多少萬(wàn)元廣告費(fèi).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲船在島B的正南A處,AB=10千米.甲船以每小時(shí)4千米的速度向北航行,同時(shí),乙船自B出發(fā)以每小時(shí)6千米的速度向北偏東60°的方向駛?cè)ィ?dāng)甲船在A,B之間,且甲、乙兩船相距最近時(shí),它們所航行的時(shí)間是( )
A. 分鐘 B.
小時(shí) C. 21.5分鐘 D. 2.15分鐘
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知幾何體A﹣BCED的三視圖如圖所示,其中俯視圖和側(cè)視圖都是腰長(zhǎng)為4的等腰直角三角形,正視圖為直角梯形,已知幾何體A﹣BCED的體積為16.
(1)求實(shí)數(shù)a的值;
(2)將直角三角形△ABD繞斜邊AD旋轉(zhuǎn)一周,求該旋轉(zhuǎn)體的表面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在四棱柱中,
底面
,底面
為菱形,
為
與
交點(diǎn),已知
,
.
(Ⅰ)求證: 平面
;
(Ⅱ)求證: ∥平面
;
(Ⅲ)設(shè)點(diǎn)在
內(nèi)(含邊界),且
,說(shuō)明滿足條件的點(diǎn)
的軌跡,并求
的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓和拋物線
有公共焦點(diǎn)
,
的中心和
的頂點(diǎn)都在坐標(biāo)原點(diǎn),過(guò)點(diǎn)
的直線
與拋物線
分別相交于
兩點(diǎn)(其中點(diǎn)
在第四象限內(nèi)).
(1)若,求直線
的方程;
(2)若坐標(biāo)原點(diǎn)關(guān)于直線
的對(duì)稱(chēng)點(diǎn)
在拋物線
上,直線
與橢圓
有公共點(diǎn),求橢圓
的長(zhǎng)軸長(zhǎng)的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】正方體的棱長(zhǎng)為
,
是
與
的交點(diǎn),
為
的中點(diǎn).
(I)求證:直線平面
.
(II)求證:平面
.
(III)二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知平面直角坐標(biāo)系內(nèi)三點(diǎn).
(1) 求過(guò)三點(diǎn)的圓的方程,并指出圓心坐標(biāo)與圓的半徑;
(2)求過(guò)點(diǎn)與條件 (1) 的圓相切的直線方程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com