【題目】已知平面直角坐標(biāo)系內(nèi)三點(diǎn).
(1) 求過三點(diǎn)的圓的方程,并指出圓心坐標(biāo)與圓的半徑;
(2)求過點(diǎn)與條件 (1) 的圓相切的直線方程.
【答案】(1),;(2)和.
【解析】試題分析:(1)先求出圓心坐標(biāo),分別求出線段與的垂直平分線,求出兩直線的交點(diǎn)即為圓心坐標(biāo),求出圓心與點(diǎn)的距離即為圓的半徑,寫出圓的標(biāo)準(zhǔn)方程即可;(2)分兩種情況考慮:當(dāng)斜率不存在時,直線滿足題意;當(dāng)斜率存在時,設(shè)為,表示出切線方程,根據(jù)直線與圓相切時,圓心到切線的距離等于圓的半徑求出的值,確定出此時切線方程.
試題解析:(1)設(shè)圓的方程為: ,
將三個帶你的坐標(biāo)分別代入圓的方程,解得,
所以圓的方程為,圓心是、半徑.
(2)當(dāng)所求直線方程斜率不存在時,直線方程為,與圓相切;
當(dāng)所求直線方程斜率存在時,設(shè)直線方程為: ,
因?yàn)榕c圓相切,所以圓心到直線的距離等于半徑,
根據(jù)點(diǎn)到直線的距離公式得,
所以所求直線方程為,
綜上,所以直線為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}是等差數(shù)列,Sn為{an}的前n項(xiàng)和,且a10=19,S10=100;數(shù)列{bn}對任意n∈N* , 總有b1b2b3…bn﹣1bn=an+2成立.
(1)求數(shù)列{an}和{bn}的通項(xiàng)公式;
(2)記cn=(﹣1)n ,求數(shù)列{cn}的前n項(xiàng)和Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線的參數(shù)方程是(是參數(shù)),以坐標(biāo)原點(diǎn)為原點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)判斷直線與曲線的位置關(guān)系;
(2)過直線上的點(diǎn)作曲線的切線,求切線長的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分13分)
已知橢圓的短軸長為,且與拋物線有共同的焦點(diǎn),橢圓的左頂點(diǎn)為A,右頂點(diǎn)為,點(diǎn)是橢圓上位于軸上方的動點(diǎn),直線,與直線分別交于兩點(diǎn).
(I)求橢圓的方程;
(Ⅱ)求線段的長度的最小值;
(Ⅲ)在線段的長度取得最小值時,橢圓上是否存在一點(diǎn),使得的面積為,若存在求出點(diǎn)的坐標(biāo),若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直三棱柱ABC—A1B1C1中,AB=BC=BB1, ,D為AC上的點(diǎn),B1C∥平面A1BD;
(1)求證:BD⊥平面;
(2)若且,求三棱錐A-BCB1的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了在夏季降溫和冬季供暖時減少能源損耗,房屋的屋頂和外墻需要建造隔熱層.某幢建筑物要建造可使用20年的隔熱層,每厘米厚的隔熱層建造成本為6萬元.該建筑物每年的能源消耗費(fèi)用C(單位:萬元)與隔熱層厚度x(單位:cm)滿足關(guān)系:C(x)= (0≤x≤10),若不建隔熱層,每年能源消耗費(fèi)用為8萬元.設(shè)f(x)為隔熱層建造費(fèi)用與20年的能源消耗費(fèi)用之和.
(1)求k的值及f(x)的表達(dá)式.
(2)隔熱層修建多厚時,總費(fèi)用f(x)達(dá)到最小,并求最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解少年兒童的肥胖是否與常喝碳酸飲料有關(guān),現(xiàn)對30名六年級學(xué)生進(jìn)行了問卷調(diào)查得到如下列聯(lián)表:
常喝 | 不常喝 | 合計(jì) | |
肥胖 | 2 | ||
不肥胖 | 18 | ||
合計(jì) | 30 |
已知在全部30人中隨機(jī)抽取1人,抽到肥胖的學(xué)生的概率為.
(1)請將上面的列表補(bǔ)充完整;
(2)是否有99.5%的把握認(rèn)為肥胖與常喝碳酸飲料有關(guān)?說明你的理由;
(3)4名調(diào)查人員隨機(jī)分成兩組,每組2人,一組負(fù)責(zé)問卷調(diào)查,另一組負(fù)責(zé)數(shù)據(jù)處理,求工作人員甲分到負(fù)責(zé)收集數(shù)據(jù)組,工作人員乙分到負(fù)責(zé)數(shù)據(jù)處理組的概率.
參考數(shù)據(jù):
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(參考公式: )
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,三棱錐的三個側(cè)面均為邊長是的等邊三角形, , 分別為, 的中點(diǎn).
(I)求的長.
(II)求證: .
(III)求三棱錐的表面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com