分析 根據不等式|ax+b|>2的解集為(-∞,2)∪(4,+∞),轉化方程|ax+b|=2的解為:2,4,列出方程組,求出a,b即可.
解答 解:∵不等式|ax+b|>2的解集為(-∞,2)∪(4,+∞),∴方程|ax+b|=2的解為:2,4,
可得$\left\{\begin{array}{l}|2a+b|=2\\|4a+b|=2\end{array}\right.$,可得$\left\{\begin{array}{l}(2a+b)^{2}=4\\(4a+b)^{2}=4\end{array}\right.$,
解得$\left\{\begin{array}{l}a=0\\ b=±2\end{array}\right.$或$\left\{\begin{array}{l}a=2\\ b=-6\end{array}\right.$或$\left\{\begin{array}{l}a=-2\\ b=6\end{array}\right.$,當$\left\{\begin{array}{l}a=0\\ b=±2\end{array}\right.$時,不滿足題意,
∴a-b=±8.
故答案為:±8.
點評 本題重點考查絕對值不等式的解法,函數與方程解之間的關系,解題的關鍵是構建方程組.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | {x|x<1,或2≤x<3,或3<x≤5} | B. | {x|x≤-1,或2<x<5} | ||
C. | {x|-1<x≤2,或x>5} | D. | {x|x<-1,或x>5} |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com