16.?dāng)?shù)列{an}的前n項(xiàng)和記為Sn,a1=t,an+1=2Sn+1,n∈N*
(Ⅰ)當(dāng)實(shí)數(shù)t為何值時(shí),數(shù)列{an}是等比數(shù)列?
(Ⅱ)在(Ⅰ)的結(jié)論下,設(shè)bn=log3an+1:Tn是數(shù)列 {$\frac{1}{_{n}•_{n+1}}$} 前n項(xiàng)和,求T2011的值.

分析 (I)an+1=2Sn+1,n∈N*.n≥2時(shí),可得:an+1-an=2(Sn-Sn-1)=2an,化為an+1=3an.又a2=2t+1,當(dāng)2t+1=3t時(shí),數(shù)列{an}是等比數(shù)列.
(II)由(I)可得:an=3n-1,bn=log3an+1=n.$\frac{1}{_{n}•_{n+1}}$=$\frac{1}{n(n+1)}$=$\frac{1}{n}$-$\frac{1}{n+1}$,利用“裂項(xiàng)求和”方法即可得出.

解答 解:(I)a1=t,∵an+1=2Sn+1,n∈N*.∴n≥2時(shí),an=2Sn-1+1,可得:an+1-an=2(Sn-Sn-1)=2an,化為an+1=3an
又a2=2a1+1=2t+1,當(dāng)2t+1=3t,即t=1時(shí),數(shù)列{an}是等比數(shù)列,首項(xiàng)為1,公比為3.
(II)由(I)可得:an=3n-1,∴bn=log3an+1=n.
$\frac{1}{_{n}•_{n+1}}$=$\frac{1}{n(n+1)}$=$\frac{1}{n}$-$\frac{1}{n+1}$,
∴數(shù)列 {$\frac{1}{_{n}•_{n+1}}$} 前n項(xiàng)和Tn=$(1-\frac{1}{2})$+$(\frac{1}{2}-\frac{1}{3})$+…+$(\frac{1}{n}-\frac{1}{n+1})$=1-$\frac{1}{n+1}$=$\frac{n}{n+1}$,
∴T2011=$\frac{2011}{2012}$.

點(diǎn)評 本題考查了數(shù)列的遞推關(guān)系、等比數(shù)列的定義通項(xiàng)公式、“裂項(xiàng)求和”方法、對數(shù)的運(yùn)算性質(zhì),考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=$\frac{1}{3}{x^3}$-4x+4.
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間和極值;
(Ⅱ)求 函數(shù)f(x)閉區(qū)間[-2,m]上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知定義在R上的函數(shù)f(x)=x2+5,記a=f(-log25),b=f(log23),c=f(-1),則a,b,c的大小關(guān)系為( 。
A.c<b<aB.a<c<bC.c<a<bD.a<b<c

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.${∫}_{0}^{2}$1dx=2.${∫}_{0}^{2}$($\frac{1}{2}$x+1)dx=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.將函數(shù)f(x)=sinx的圖象向上平移1個(gè)單位得到圖象C1,再將C1上所有點(diǎn)的縱坐標(biāo)伸長到原來的4倍(橫坐標(biāo)不變)得到C2,最后將C2向左平移$\frac{π}{2}$個(gè)單位長度得到g(x)的圖象.
(Ⅰ)求函數(shù)g(x)的解析式,并求其值域和單調(diào)遞減區(qū)間;
(Ⅱ)已知關(guān)于x的方程3f(x)+g(x)=m+4在[0,π]內(nèi)有兩個(gè)不同的解α、β:
①求實(shí)數(shù)m的取值范圍;
②證明:$m=5cos\frac{α-β}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.判斷下列命題的為真命題.( 。
A.若a>b,c>d,則ac>bdB.若a>b>0,c>d>0,則$\frac{a}{c}$>$\fraca24wc82$
C.若a>b,c<d,則a-c>b-dD.若a>b,則an>bn,$\root{n}{a}$>$\root{n}$(n∈N+且n≥2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知p:$\frac{1}{x-3}$≥1,q:|x-a|<1,若p是q的充分不必要條件,則實(shí)數(shù)a的取值范圍為( 。
A.(-∞,4]B.(3,4]C.[3,4]D.(3,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.從1,2,3,4,5,6這六個(gè)數(shù)字中隨機(jī)取出兩個(gè)數(shù)字.
(1)求“將取出的這兩個(gè)數(shù)字組成的兩位數(shù)大于30”的概率;
(2)記取出的兩個(gè)數(shù)字之差的絕對值為X,求X的概率分布及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知圓x2+(y-2)2=4,點(diǎn)A在直線x-y-2=0上,過A引圓的兩條切線,切點(diǎn)為T1,T2,
(Ⅰ)若A點(diǎn)為(1,-1),求直線T1T2的方程;
(Ⅱ)求|AT1|的最小值.

查看答案和解析>>

同步練習(xí)冊答案