分析 (1)設(shè)袋子中有n,(n∈N)個白球,$\frac{{C}_{n}^{2}}{{C}_{7}^{2}}=\frac{1}{7}$,求解n即可.
(2)由(1)得,袋子中有4個紅球,3個白球,X的可能取值為0,1,2,3,求出概率得到分布列,然后求解期望即可.
解答 (本小題滿分12分)
(1)解:設(shè)袋子中有n,(n∈N)個白球,依題意得,$\frac{{C}_{n}^{2}}{{C}_{7}^{2}}=\frac{1}{7}$,…(1分)
即$\frac{\frac{n(n-1)}{2}}{\frac{7×6}{2}}=\frac{1}{7}$,化簡得,n2-n-6=0,…(2分)
解得,n=3或n=-2(舍去).…(3分)
∴袋子中有3個白球.…(4分)
(2)解:由(1)得,袋子中有4個紅球,3個白球.…(5分)
X的可能取值為0,1,2,3,…(6分)
P(X=0)=$\frac{4}{7}$,P(X=1)=$\frac{3}{7}×\frac{4}{6}=\frac{2}{7}$,
P(X=2)=$\frac{3}{7}×\frac{2}{6}×\frac{4}{5}=\frac{4}{35}$,
P(X=3)=$\frac{3}{7}×\frac{2}{6}×\frac{1}{5}×\frac{4}{4}=\frac{1}{35}$.…(10分)
∴X的分布列為:
X | 0 | 1 | 2 | 3 |
P | $\frac{4}{7}$ | $\frac{2}{7}$ | $\frac{4}{35}$ | $\frac{1}{35}$ |
點評 本小題主要考查古典概型、解方程、隨機變量的分布列與均值(數(shù)學期望)等知識,考查或然與必然的數(shù)學思想方法,以及數(shù)據(jù)處理能力、運算求解能力和應用意識.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{7}{5}$ | B. | $\frac{4}{3}$ | C. | 2 | D. | $\frac{10}{3}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com