8.已知雙曲線的標(biāo)準(zhǔn)方程為$\frac{y^2}{2}-\frac{x^2}{4}$=1,則雙曲線的漸近線方程為(  )
A.y=±2xB.$y=±\sqrt{2}x$C.$y=±\frac{1}{2}x$D.$y=±\frac{{\sqrt{2}}}{2}x$

分析 由雙曲線$\frac{{y}^{2}}{{a}^{2}}$-$\frac{{x}^{2}}{^{2}}$=1(a,b>0)的漸近線方程為y=±$\frac{a}$x,求得雙曲線的a,b,即可得到所求漸近線方程.

解答 解:由雙曲線$\frac{{y}^{2}}{{a}^{2}}$-$\frac{{x}^{2}}{^{2}}$=1(a,b>0),
可得漸近線方程為y=±$\frac{a}$x,
雙曲線的標(biāo)準(zhǔn)方程為$\frac{y^2}{2}-\frac{x^2}{4}$=1的a=$\sqrt{2}$,b=2,
可得漸近線方程為y=±$\frac{\sqrt{2}}{2}$x.
故選:D.

點(diǎn)評(píng) 本題考查雙曲線的漸近線方程的求法,注意運(yùn)用雙曲線的方程和漸近線方程的關(guān)系,考查運(yùn)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知點(diǎn)$A(\sqrt{5}\;,\;\;0)$和曲線$y=\sqrt{\frac{x^2}{4}-1}(2\;≤\;x\;≤\;2\sqrt{5})$上的點(diǎn)P1,P2,…,Pn.若|P1A|,|P2A|,…,|PnA|成等差數(shù)列且公差$d∈(\frac{1}{5}\;,\;\;\frac{1}{{\sqrt{5}}})$,則n的最大值為14.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.若拋物線y2=2px(p>0)的焦點(diǎn)為F,點(diǎn)A(3,2)在拋物線開口內(nèi),點(diǎn)P為拋物線上一點(diǎn),當(dāng)△APF的周長(zhǎng)最小時(shí),△APF的面積為1,則|PF|=( 。
A.1B.$\frac{3}{2}$C.2D.$\frac{5}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.用0,1,2,3這四個(gè)數(shù)字,可以組成沒有重復(fù)數(shù)字的3位數(shù),其中奇數(shù)的個(gè)數(shù)為8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.命題“經(jīng)過圓外一點(diǎn)與圓相切的直線至少有一條”的否定是(  )
A.經(jīng)過圓外一點(diǎn)與圓相切的直線至多有兩條
B.經(jīng)過圓外一點(diǎn)與圓相切的直線有兩條
C.經(jīng)過圓外一點(diǎn)與圓相切的直線不存在
D.經(jīng)過圓外一點(diǎn)與圓相切的直線至多有一條

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.如圖,該程序運(yùn)行后輸出的結(jié)果為15.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.下列敘述中正確的是(  )
A.若a,b,c∈R,則“ax2+bx+c≥0”的充分條件是“b2-4ac≤0”
B.若a,b,c∈R,則“ab2>cb2”的充要條件是“a>c”
C.“直線a∥b”是“直線a⊥平面α,直線b⊥平面α”的必要條件
D.b2=ac是a,b,c成等比數(shù)列的充要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.如圖,AB是圓O的一條直徑,弦CD垂直于AB,垂足為點(diǎn)G,E是劣弧$\widehat{BD}$上一點(diǎn),點(diǎn)E處的切線與CD的延長(zhǎng)線交于點(diǎn)P,連接AE,交CD于點(diǎn)F.
(1)求證:PE=PF;
(2)求證:DF•CF=2GF•PF.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.在△ABC中,角A,B,C所對(duì)邊分別為a,b,c且acosC,bcosB,ccosA成等差數(shù)列.
(1)求B的值;
(2)求2sin2A-1+cos(A-C)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案