考點:分段函數(shù)的應用
專題:函數(shù)的性質(zhì)及應用
分析:A.由x≤0的函數(shù)單調(diào)性,即可判斷;
B.由于x≤0時,y=-(
)
x是單調(diào)遞增函數(shù),即可判斷;
C.令a=0,判斷函數(shù)f(x)的單調(diào)性,即可判斷;
D..令f(x)=0,則x
2-2ax-1=0(x>0),解出兩根,討論a的符號,確定根的符號,即可判斷.
解答:
解:A.由于x≤0時,y=-(
)
x是單調(diào)遞增函數(shù),故A錯;
B.由于x≤0時,y=-(
)
x是單調(diào)遞增函數(shù),故f(x)無最小值,B錯;
C若a=0,則f(x)在(-∞,0]上遞增,在(0,+∞)上遞增,且連續(xù),
故f(x)在R上遞增,故f(x)無極值,即C錯;
D.令f(x)=0,則x
2-2ax-1=0(x>0),解得x=a±
,
若a>0,則a+
>0,a-
<0;
若a=0,a+
>0,a-
<0;
若a<0,a+
>0,a-
<0.
則?a∈R,f(x)有唯一零點,故D正確.
故選:D.
點評:本題考查函數(shù)的性質(zhì)和運用,考查函數(shù)的單調(diào)性、最值、極值以及零點的個數(shù),屬于中檔題.