已知數(shù)列滿足:已知存在常數(shù)p,q使數(shù)列為等
比數(shù)列。(13分)
(1)求常數(shù)p、q及的通項(xiàng)公式;
(2)解方程
(3)求
解:①由條件令,
,
則:
故:

,∴(5分)
②計(jì)算知,,,
故猜測(cè)≥5,>0即,下證。
(1)當(dāng)成立
(2)假設(shè)≥5)成立,即
那么
成立。
由(1)、(2)可知命題成立。
的解為。(4分)
③由②可得,
≤3時(shí),


>3時(shí),


(4分)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分12分)已知等差數(shù)列{}的前n項(xiàng)和為,且。
(1)求數(shù)列{}的通項(xiàng)公式;
(2)設(shè),求數(shù)列{}的前n項(xiàng)和。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿分16分)A、B是函數(shù)f(x)=+的圖象上的任意兩點(diǎn),且=(),已知點(diǎn)M的橫坐標(biāo)為.
(Ⅰ)求證:M點(diǎn)的縱坐標(biāo)為定值;
(Ⅱ)若Sn=f()+f()+…+f(),n∈N+且n≥2,求Sn;
(Ⅲ)已知數(shù)列{an}的通項(xiàng)公式為. Tn為其前n項(xiàng)的和,若Tn<(Sn+1+1),對(duì)一切正整數(shù)都成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分10分)已知數(shù)列的前項(xiàng)和為,
(I)求數(shù)列的通項(xiàng)公式;
(II)設(shè),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

2和30的等差中項(xiàng)為(       )
A.4B.14C.16D.18

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

等差數(shù)列的前項(xiàng)和滿足,下列結(jié)論正確的是(   )
A.中最大值B.中最小值
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知方程的四個(gè)實(shí)根組成以為首項(xiàng)的等差數(shù)列,則
A.2               C.      D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分10分)
(1)等差數(shù)列{}中,已知a1,a2+a5=4,=33,試求n的值.
(2)在等比數(shù)列{}中,a5=162,公比q=3,前n項(xiàng)和=242,求首項(xiàng)a1和項(xiàng)數(shù)n.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分12分)已知函數(shù),數(shù)列滿足條件:
(1)求證:數(shù)列為等比數(shù)列;
(2)是數(shù)的前項(xiàng)和,求使成立的最小的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案