7.已知正數(shù)a、b、c滿(mǎn)足a+b+c=1,則$\frac{1}{a+b}$+$\frac{1}{b+c}$+$\frac{1}{c+a}$的最小值是$\frac{9}{2}$.

分析 由題意可得$\frac{1}{a+b}$+$\frac{1}{b+c}$+$\frac{1}{c+a}$=$\frac{1}{2}$[(a+b)+(b+c)+(c+a)]($\frac{1}{a+b}$+$\frac{1}{b+c}$+$\frac{1}{c+a}$),再由三元基本不等式,即可得到最小值.

解答 解:由正數(shù)a、b、c滿(mǎn)足a+b+c=1,
可得2=(a+b)+(b+c)+(c+a),
即有$\frac{1}{a+b}$+$\frac{1}{b+c}$+$\frac{1}{c+a}$=$\frac{1}{2}$[(a+b)+(b+c)+(c+a)]($\frac{1}{a+b}$+$\frac{1}{b+c}$+$\frac{1}{c+a}$)
≥$\frac{1}{2}$•3$\root{3}{(a+b)(b+c)(c+a)}$•3$\root{3}{\frac{1}{a+b}•\frac{1}{b+c}•\frac{1}{c+a}}$=$\frac{9}{2}$,
當(dāng)且僅當(dāng)a=b=c=$\frac{1}{3}$時(shí),取得最小值$\frac{9}{2}$.
故答案為:$\frac{9}{2}$.

點(diǎn)評(píng) 本題考查基本不等式的運(yùn)用:求最值,考查乘1法和化簡(jiǎn)運(yùn)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.對(duì)一切實(shí)數(shù)x,不等式3x2+(a-4)x+3>0恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知函數(shù)f(x)=ax2+2x+3在(-∞,1)內(nèi)是增函數(shù),在(1,+∞)內(nèi)是減函數(shù)
(1)求a的值
(2)求f(x)在x∈[0,3]上的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.在圓的內(nèi)接四邊形ABCD中,AB=1,BC=2,CD=3,DA=4,求四邊形ABCD的外接圓半徑.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.若空間直線l的方向向量為$\overrightarrow{t}$,平面α的法向量為$\overrightarrow{n}$,$\overrightarrow{t}$與$\overrightarrow{n}$的夾角θ>$\frac{π}{2}$,則l與α所成的角為θ-$\frac{π}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.如圖所示,某畜牧基地要圍成相同面積的羊圈4間,一面可利用原有的墻壁,其余各面用籬笆圍成,籬笆總長(zhǎng)為36m,則每間羊圈的長(zhǎng)和寬各為多少時(shí),羊圈面積最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.在數(shù)列{an}中,an>0,Sn是它的前n項(xiàng)和,且2$\sqrt{{S}_{n}}$=an+1,求an和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.在正方體ABCD-A1B1C1D1中,若M、N分別為B1D1與C1D上的點(diǎn),且MN⊥B1D,MN⊥C1D1,則MN與A1C的位置關(guān)系是MN∥A1C.1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.在數(shù)列{an}中,a1=cosθ,an+1=ansinθ,其中0<θ<2π,θ≠$\frac{π}{2}$且θ≠$\frac{3π}{2}$,若$\underset{lim}{n→∞}$(a1+a2+…+an)=$-\frac{\sqrt{3}}{3}$,則θ等于(  )
A.$\frac{7π}{10}$B.$\frac{5π}{12}$C.$\frac{7π}{6}$D.$\frac{5π}{6}$

查看答案和解析>>

同步練習(xí)冊(cè)答案