2.若空間直線l的方向向量為$\overrightarrow{t}$,平面α的法向量為$\overrightarrow{n}$,$\overrightarrow{t}$與$\overrightarrow{n}$的夾角θ>$\frac{π}{2}$,則l與α所成的角為θ-$\frac{π}{2}$.

分析 根據(jù)題意,畫出圖形,結(jié)合圖形求出直線l與平面α所成的角.

解答 解:空間直線l的方向向量為$\overrightarrow{t}$,平面α的法向量為$\overrightarrow{n}$,$\overrightarrow{t}$與$\overrightarrow{n}$的夾角為θ>$\frac{π}{2}$,
∴$\overrightarrow{t}$與平面α的法向量$\overrightarrow{n}$的較小夾角為π-θ,
∴直線l與平面α所成的角為φ=$\frac{π}{2}$-(π-θ)=θ-$\frac{π}{2}$,如圖所示.
故答案為:θ-$\frac{π}{2}$.

點評 本題考查了空間直線與平面所成的角的計算問題,是基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=$\left\{\begin{array}{l}{3{x}^{2}+2ax-a-6,x<0}\\{3{x}^{2}-(a+3)x+a,x≥0}\end{array}\right.$,當(dāng)a=1時,求f(x)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知二次函數(shù)y=x2-(a+2)x+a.
(1)求證:不論a為任何實數(shù),函數(shù)的圖象與x軸都有兩個交點;
(2)試求:當(dāng)a為何值時,函數(shù)圖象與x軸的兩個交點之間的距離等于2;
(3)函數(shù)圖象與x軸的兩個交點分別位于x=2的兩側(cè),a的取值如何?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.在△ABC中,S△ABC=15$\sqrt{3}$,A+C=$\frac{B}{2}$,a+b+c=30,求三角形各邊邊長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知P={1,2,3,4,5},Q={3,4,5,6,7},記$\widehat{P}$={n|2n+1∈P,n∈N},$\widehat{Q}$={n|2n+1∈Q,n∈N},求($\widehat{P}$∩∁N$\widehat{Q}$)∪($\widehat{Q}$∩∁N$\widehat{P}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知正數(shù)a、b、c滿足a+b+c=1,則$\frac{1}{a+b}$+$\frac{1}{b+c}$+$\frac{1}{c+a}$的最小值是$\frac{9}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖,在三棱錐V-ABC中,點E∈VA,點F∈VC,經(jīng)過EF作一個截面γ,使VB∥平面γ,試作平面γ與三棱錐V-ABC表面的交線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知四棱錐P-ABCD的底面是矩形.PA⊥AB,PA⊥AC,M,N分別是AB,PC的中點.
(1)證明:BC⊥面PAB;
(2)求證:MN⊥AB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知函數(shù)f(x)=2x+3,g(2x-1)=f(x2-1).則 g(x+1)=($\frac{1}{2}$x+1)2+1.

查看答案和解析>>

同步練習(xí)冊答案