14.設(shè)a∈R,則“a>1”是“a2>|a-2|”的( 。
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.既不充分也不必要條件

分析 a2>|a-2|,化為$\left\{\begin{array}{l}{a≥2}\\{{a}^{2}>a-2}\end{array}\right.$,或$\left\{\begin{array}{l}{a<2}\\{{a}^{2}>2-a}\end{array}\right.$,分別解出即可得出.

解答 解:a2>|a-2|,化為$\left\{\begin{array}{l}{a≥2}\\{{a}^{2}>a-2}\end{array}\right.$,或$\left\{\begin{array}{l}{a<2}\\{{a}^{2}>2-a}\end{array}\right.$,
解得a≥2,或1<a<2,或a<-2.
∴“a>1”是“a2>|a-2|”的充分不必要條件.
故選:A.

點(diǎn)評(píng) 本題考查了不等式的解法、簡(jiǎn)易邏輯的判定方法,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知$sin({65°+α})=\frac{1}{3}$,則cos(25°-α)的值為( 。
A.$-\frac{1}{3}$B.$\frac{1}{3}$C.$-\frac{{2\sqrt{2}}}{3}$D.$\frac{{2\sqrt{2}}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.若復(fù)數(shù)z滿足$\frac{z+2i}{z}$=2+3i,其中i為虛數(shù)單位,則z=( 。
A.$\frac{2}{5}$+$\frac{3}{5}$iB.$\frac{3}{5}$+$\frac{2}{5}$iC.$\frac{3}{5}$+$\frac{1}{5}$iD.$\frac{1}{5}$+$\frac{3}{5}$i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知集合A={x|2x2-7x+3≤0,x∈R},B={x|0<x≤1}則集合A∩B=( 。
A.$(0,\frac{1}{2}]$B.[1,3]C.$[\frac{1}{2},1]$D.(0,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c.若$bcosC+\frac{csinB}{{\sqrt{3}}}=a$.
(1)求角B的大;
(2)若△ABC的面積為$\sqrt{3}$,A>C,且其外接圓的面積為4π.試求邊a與邊c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知△ABC中,a,b,c分別是角A,B,C的對(duì)邊,$\frac{cosA-cosC}{cosB}$=$\frac{sinC-sinA}{sinB}$
(Ⅰ)求$\frac{c}{a}$的值;
(Ⅱ)若cosB=$\frac{2}{3}$,△ABC的面積為$\frac{\sqrt{5}}{6}$,求b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$$+\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{1}{2}$,右焦點(diǎn)F2到直線x+y+5=0的距離為3$\sqrt{2}$.
(1)求橢圓C的方程;
(2)若直線l經(jīng)過(guò)橢圓C的右焦點(diǎn)F2,且與拋物線y2=4x交于A1,A2兩點(diǎn),與橢圓C交于B1,B2兩點(diǎn),當(dāng)以B1B2為直徑的圓經(jīng)過(guò)橢圓C的左焦點(diǎn)F1時(shí),求以A1A2為直徑的圓的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知函數(shù)f(x)=xlnx+a,直線y=x與曲線y=f(x)相切.
(Ⅰ)求a的值;
(Ⅱ)證明:xex-1[f(x)-2]+f(x)≥0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.已知集合A={x|y=$\sqrt{x-{x}^{2}}$},B={y|y=ln(1-x)},則A∪B=R.

查看答案和解析>>

同步練習(xí)冊(cè)答案