5.已知向量$\overrightarrow a,\overrightarrow b$滿足,且$|{\overrightarrow a}|=2,|{\overrightarrow b}|=3$且$\overrightarrow a$與$\overrightarrow b$的夾角為$\frac{π}{3}$,則$\overrightarrow a•\overrightarrow b$=3.

分析 根據(jù)平面向量數(shù)量積的定義,寫出運(yùn)算過程即可.

解答 解:$|{\overrightarrow a}|=2,|{\overrightarrow b}|=3$,且$\overrightarrow a$與$\overrightarrow b$的夾角為$\frac{π}{3}$,
則$\overrightarrow a•\overrightarrow b$=|$\overrightarrow{a}$|×|$\overrightarrow$|×cos$\frac{π}{3}$
=2×3×$\frac{1}{2}$
=3.
故答案為:3.

點(diǎn)評 本題考查了平面向量數(shù)量積的運(yùn)算問題,是基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.經(jīng)過A(0,-1),B(2,3)的直線的斜率等于( 。
A.2B.-2C.$\frac{1}{2}$D.$-\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.若xlog32≥-1,則函數(shù)f(x)=4x-2x+1-3的最小值為( 。
A.-4B.-3C.$-\frac{32}{9}$D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.某小賣部為了研究氣溫對熱飲銷售的影響,經(jīng)過統(tǒng)計,得到一個賣出的熱飲杯數(shù)y與當(dāng)天氣溫(平均溫度)x/°C的對比表:
 x 0 1 3 4
 y 140 136 129 125
(1)請在圖a中畫出上表數(shù)據(jù)的散點(diǎn)圖;
(2)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程$\widehat{y}$=$\widehat$x+$\widehat{a}$;
(3)如果某天的氣溫是5°C,試根據(jù)(2)求出的線性回歸方程預(yù)測這天大約可以賣出的熱飲杯數(shù).
參考公式:最小二乘法求線性回歸方程系數(shù)公式:$\widehat$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-,{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat$$\overline{x}$.
參考數(shù)據(jù):0×140+1×136+3×129+4×125=1023,(140+136+129+125)÷4=132.5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.“x<2”是“-3<x<2”的( 。
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.設(shè)函數(shù)$f(x)=lnx-ax-\frac{1}{x}-1$.
(1)當(dāng)a=1時,求曲線f(x)在x=1處的切線方程;
(2)當(dāng)$a=\frac{3}{4}$時,求函數(shù)f(x)的單調(diào)區(qū)間;
(3)在(2)的條件下,設(shè)函數(shù)$g(x)={x^2}-2bx-\frac{5}{12}$,若對于?x1∈[1,2],?x2∈[0,1],使f(x1)≥g(x2)成立,求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知隨機(jī)變量ξ的分布列為(如表所示):設(shè)η=2ξ+1,則η的數(shù)學(xué)期望Eη的值是$\frac{2}{3}$.
ξ-101
P$\frac{1}{2}$$\frac{1}{6}$$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知數(shù)列{an}的前n項和為Sn,且滿足an+Sn=2.
(1)求數(shù)列{an}的通項公式;
(2)令bn=n•an,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知點(diǎn)M是拋物線x2=4y上的一動點(diǎn),F(xiàn)為拋物線的焦點(diǎn),A是圓C:(x-1)2+(y-4)2=1上一動點(diǎn),則|MA|+|MF|的最小值為( 。
A.3B.4C.5D.6

查看答案和解析>>

同步練習(xí)冊答案