16.若xlog32≥-1,則函數(shù)f(x)=4x-2x+1-3的最小值為( 。
A.-4B.-3C.$-\frac{32}{9}$D.0

分析 設(shè)${2^x}=t({t≥\frac{1}{3}})$,換元得到g(t)=${t^2}-2t-3={({t-1})^2}-4,({t≥\frac{1}{3}})$,求出g(t)的最小值即f(x)的最小值即可.

解答 解:∵xlog32≥-1,
∴$x≥-\frac{1}{{{{log}_3}2}}=-{log_2}3={log_2}\frac{1}{3}$,
∴${2^x}≥{2^{{{log}_2}\frac{1}{3}}}=\frac{1}{3}$,
設(shè)${2^x}=t({t≥\frac{1}{3}})$,
則f(x)=4x-2x+1-3,
則g(t)=${t^2}-2t-3={({t-1})^2}-4,({t≥\frac{1}{3}})$,
當(dāng)t=1時,g(t)有最小值g(1)=-4,
即函數(shù)f(x)=4x-2x+1-3的最小值為-4,
故選:A.

點評 本題考查了二次函數(shù)的性質(zhì),考查換元思想,是一道中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知函數(shù)g(x)=(a+1)x-2+1(a>0)的圖象恒過定點A,且點A又在函數(shù)$f(x)={log_{\sqrt{3}}}$(x+a)的圖象上.則實數(shù)a=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知圓C1:x2+y2-2mx+m2=4,圓C2:x2+y2+2x-2my=8-m2(m>3),則兩圓的位置關(guān)系是(  )
A.相交B.內(nèi)切C.外切D.外離

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知集合A=$\left\{{\left.x\right|{{({\frac{1}{2}})}^{{x^2}-5x+6}}≥\frac{1}{4}}\right\},B=\left\{{\left.x\right|{{log}_2}\frac{x-3}{x-1}<1}\right\},C=\left\{{\left.x\right|a-1<x<a}\right\}$.
(Ⅰ)求A∩B,(∁RB)∪A;
(Ⅱ)若C⊆A,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知命題:“?x∈{x|-1<x<1},使等式x2-x-m=0成立”是真命題.
(1)求實數(shù)m的取值集合M;
(2)設(shè)不等式$\frac{x+a-2}{x-a}≤0$的解集為N,若x∈N是x∈M的必要不充分條件,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知數(shù)列{an}是公差為2的等差數(shù)列,且a1,a2,a4成等比數(shù)列,則a1等于( 。
A.0B.$\frac{1}{5}$C.2D.0或2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知F1、F2分別是雙曲線$\frac{x^2}{8}-{y^2}$=1的左、右焦點,P為雙曲線右支上的一點,I是△PF1F2的內(nèi)心,且${S_{△IP{F_2}}}={S_{△IP{F_1}}}-m{S_{△I{F_1}{F_2}}}$,則m=( 。
A.$\frac{{2\sqrt{14}}}{7}$B.$\frac{{2\sqrt{2}}}{3}$C.$\frac{{3\sqrt{2}}}{4}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知向量$\overrightarrow a,\overrightarrow b$滿足,且$|{\overrightarrow a}|=2,|{\overrightarrow b}|=3$且$\overrightarrow a$與$\overrightarrow b$的夾角為$\frac{π}{3}$,則$\overrightarrow a•\overrightarrow b$=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.命題“$?x>0,x+\frac{1}{x}≥2$”的否定是$?x>0,x+\frac{1}{x}<2$.

查看答案和解析>>

同步練習(xí)冊答案