A. | [-$\frac{π}{2}$+2kπ,π+2kπ],k∈Z | B. | [-$\frac{π}{2}$+3kπ,π+3kπ],k∈Z | ||
C. | [π+2kπ,$\frac{5}{2}$π+2kπ],k∈Z | D. | [π+3kπ,$\frac{5}{2}$π+3kπ],k∈Z |
分析 由題意結(jié)合三角形的周期性和圖象待定系數(shù)可得ω,整體求解2kπ-$\frac{π}{2}$≤$\frac{2}{3}$x-$\frac{π}{6}$≤2kπ+$\frac{π}{2}$可得單調(diào)遞增區(qū)間.
解答 解:∵f(x)=sin(ωx-$\frac{π}{6}$)+$\frac{1}{2}$,且f(α)=-$\frac{1}{2}$,f(β)=$\frac{1}{2}$,
∴sin(ωα-$\frac{π}{6}$)+$\frac{1}{2}$=-$\frac{1}{2}$,解得sin(ωα-$\frac{π}{6}$)=-1,
同理可得sin(ωβ-$\frac{π}{6}$)=0,
由|α-β|的最小值為$\frac{3π}{4}$和三角函數(shù)圖象可得$\frac{1}{4}$•$\frac{2π}{ω}$=$\frac{3π}{4}$,
解得ω=$\frac{2}{3}$,∴f(x)=sin($\frac{2}{3}$x-$\frac{π}{6}$)+$\frac{1}{2}$,
由2kπ-$\frac{π}{2}$≤$\frac{2}{3}$x-$\frac{π}{6}$≤2kπ+$\frac{π}{2}$可得3kπ-$\frac{π}{2}$≤x≤3kπ+π
∴函數(shù)的單調(diào)遞增區(qū)間為:[3kπ-$\frac{π}{2}$,3kπ+π]k∈Z
故選:B.
點(diǎn)評(píng) 本題考查三角函數(shù)的圖象和性質(zhì),涉及周期性和單調(diào)性,屬中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -2 | B. | -1 | C. | 1+$\sqrt{3i}$ | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | [2kπ-$\frac{3π}{8}$,2kπ+$\frac{π}{8}$](k∈Z) | B. | [2kπ+$\frac{π}{8}$,2kπ+$\frac{5π}{8}$](k∈Z) | ||
C. | [kπ-$\frac{3π}{8}$,kπ+$\frac{π}{8}$](k∈Z) | D. | [kπ+$\frac{π}{8}$,kπ+$\frac{5π}{8}$](k∈Z) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 充分而不必要條件 | B. | 必要而不充分條件 | ||
C. | 充分必要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com