精英家教網 > 高中數學 > 題目詳情

【題目】已知命題 :若 ,則 ,下列說法正確的是( )

A. 命題 的否命題是“若 ,則

B. 命題的逆否命題是“若 ,則

C. 命題是真命題

D. 命題的逆命題是真命題

【答案】D

【解析】A. 命題 的否命題是若

B. 命題的逆否命題是,則

C. 命題是假命題,比如當x=-3,就不滿足條件,故選項不正確.

D. 命題的逆命題是若是真命題.

故答案為:D.

型】單選題
束】
9

【題目】“雙曲線的方程為 ”是“雙曲線的漸近線方程為 ”的( )

A. 充分不必要條件 B. 必要不充分條件

C. 充分必要條件 D. 既不充分也不必要條件

【答案】A

【解析】雙曲線的方程為,則漸近線方程為,漸近線方程為: ,反之當漸近線方程為時,只需要滿足,等軸雙曲線即可.故選擇充分不必要條件.

故答案為:A.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知函數,且

(1)求的值;

(2)畫出圖像,并寫出單調遞增區(qū)間(不需要說明理由);

(3)若,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知a0且滿足不等式22a+1>25a﹣2

(1)求實數a的取值范圍;

(2)求不等式loga(3x+1)<loga(7﹣5x);

(3)若函數y=loga(2x﹣1)在區(qū)間[1,3]有最小值為﹣2,求實數a的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數是R上的偶函數,其中e是自然對數的底數.

(1)求實數的值;

(2)探究函數上的單調性,并證明你的結論;

(3)若函數有零點,求實數m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某家庭進行理財投資,有兩種方式,甲為投資債券等穩(wěn)健型產品,乙為投資股票等風險型產品,設投資甲、乙兩種產品的年收益分別為、萬元,根據長期收益率市場預測,它們與投入資金萬元的關系分別為,,(其中,都為常數),函數,對應的曲線,如圖所示

(1)求函數的解析式;

(2)若該家庭現(xiàn)有萬元資金,全部用于理財投資,問:如何分配資金能使一年的投資獲得最大收益,其最大收益是多少萬元?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設函數的圖像與軸的交點為,在軸右側的第一個最高點和第一個與軸交點分別為

(1)求的解析式;

(2)將函數圖像上所有點的橫坐標變?yōu)樵瓉淼?/span>倍(縱坐標不變),再將所得圖像沿軸正方向平移個單位,得到函數的圖像,求的解析式;

(3)在(2)的條件下求函數上的值域。

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】拋物線 )的焦點為 ,已知點 為拋物線上的兩個動點,且滿足 .過弦 的中點 作拋物線準線的垂線 ,垂足為 ,則 的最大值為__________

【答案】1

【解析】,在三角形ABF中,用余弦定理得到

,

故最大值為1.

故答案為:1.

點睛:本題主要考查了拋物線的簡單性質.解題的關鍵是利用了拋物線的定義。一般和拋物線有關的小題,很多時可以應用結論來處理的;平時練習時應多注意拋物線的結論的總結和應用。尤其和焦半徑聯(lián)系的題目,一般都和定義有關,實現(xiàn)點點距和點線距的轉化。

型】填空
束】
17

【題目】 的內角 , , 所對的邊分別為 , , ,且 , .

(1)當 時,求 的值;

(2)當的面積為 時,求的周長.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,四邊形ABCD內接于⊙O,過點A作⊙O的切線EP交CB的延長線于P,∠PAB=35°.

(1)若BC是⊙O的直徑,求∠D的大;
(2)若∠PAB=35°,求證:

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在四棱錐P-ABCD中,底面ABCD為菱形,∠BAD=60°,QAD的中點.

(Ⅰ)若PA=PD,求證:平面PQB⊥平面PAD;

(Ⅱ)點M在線段PC上,PM=tPC,試確定實數t的值,使PA∥平面MQB

(Ⅲ)在(Ⅱ)的條件下,若平面PAD⊥平面ABCD,且PA=PD=AD=2,求二面角M-BQ-C的大小.

查看答案和解析>>

同步練習冊答案