在正方體ABCD-A1B1C1D1中,O為底面ABCD的中心,E為CC1中點.求證:A1O⊥OE.
考點:直線與平面垂直的性質(zhì)
專題:證明題,空間位置關(guān)系與距離
分析:利用線面垂直的判定定理證明DB⊥平面A1ACC1 ,證得A1O⊥DB.再用勾股定理證明A1O⊥OE.
解答:
證明:連接EO.
∵DB⊥A1A,DB⊥AC,A1A∩AC=A,
∴DB⊥平面A1ACC1
又A1O?平面A1ACC1,∴A1O⊥DB.
在矩形A1ACC1中,tan∠AA1O=
2
2
,tan∠EOC=
2
2
,∴∠AA1O=∠EOC,
則∠A1OA+∠EOC=90°.
∴A1O⊥OE.
點評:本題主要考查了直線與平面垂直的性質(zhì),屬于基本知識的考查.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

由1、2、3、4、5、6、7、9組成的沒有重復(fù)數(shù)字且1、3都不與5相鄰的八位數(shù)的個數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在[1-2a,2-a]上的偶函數(shù)f(x),當(dāng)x≥0時,f(x)=x+ex,若f(t)<f(2t-1).則t的取值范圍是( 。
A、[-1,1]
B、[0,1]
C、[
1
2
,1]
D、[0,
1
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

計算定積分:
3
1
2xdx.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某服裝店老板上午進了50件襯衫,價格為每件m元,下午又進了30件同樣的襯衫,價格為每件n元(n>m),后來由于市場變化老板以每件
(m+n)
2
元的價格賣光這批襯衫,請問老板盈利了,還是虧本了?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

當(dāng)-
π
2
≤x≤
π
2
時,函數(shù)f(x)=2sin(x+
π
3
)的最大值和最小值是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(
1
2
cos2x+1,1),
b
=(1,
3
2
sinx•cosx).
(1)若y=
a
b
,求y的周期;
(2)若x∈[-
π
6
,
π
4
],求y的最值,并求出y取得最值時x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知曲線y=2x2+x+1上一點A(1,4),求點A處切線的斜率
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線l經(jīng)過P(1,1)且與雙曲線x2-
y2
2
=1交于A、B兩點,如果點P是線段AB的中點,那么直線l的方程為(  )
A、2x-y-1=0
B、2x+y-3=0
C、x-2y+1=0
D、不存在

查看答案和解析>>

同步練習(xí)冊答案