【題目】在如圖(1)所示的四邊形中,,,,.將沿折起,使二面角為直二面角(如圖(2)),為的中點.
(1)求證:平面;
(2)求二面角的余弦值.
【答案】(1)見解析;(2)
【解析】
(1)由題意可得平面,故 . 以為坐標原點,分別以,,為軸、軸、軸建立如圖所示空間直角坐標系,明確平面BOP的法向量與AD的方向向量,利用二者共線,即可證得;
(2)求出平面的法向量,利用法向量的夾角余弦即可得到二面角的余弦值.
(1)證明:由題,知,.
又∵二面角為直二面角,∴平面.
又∵平面,∴.
以為坐標原點,分別以,,為軸、軸、軸建立如圖所示空間直角坐標系.
∵,,,
∴由平面幾何知識,可得,,,,.
∵為的中點,∴.
設平面的法向量為.
∴即
令,則.∴.
又∵,∴.
∴平面.
(2)解:設為中點,連接,如圖.
∵平面,平面,
∴平面平面,交線為.
又∵為等邊三角形,∴.
又∵平面.∴平面.∴是平面的法向量.
∵,
∴.
∵,
∴二面角的余弦值為.
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,曲線過點,其參數方程為(為參數,),以為極點,軸非負半軸為極軸,建立極坐標系,曲線的極坐標方程為.
(1)求曲線的普通方程和曲線的直角坐標方程;
(2)求已知曲線和曲線交于兩點,且,求實數的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】若質地均勻的六面體玩具各面分別標有數字1,2,3,4,5,6.拋擲該玩具后,任何一個數字所在的面朝上的概率均相等.拋擲該玩具一次,記事件A=“向上的面標記的數字是完全平方數(即能寫出整數的平方形式的數,如9=32,9是完全平方數)”
(1)甲、乙二人利用該玩具進行游戲,并規(guī)定:①甲拋擲一次,若事件A發(fā)生,則向上一面的點數的6倍為甲的得分;若事件A不發(fā)生,則甲得0分;②乙拋擲一次,將向上的一面對應的數字作為乙的得分,F甲、乙二人各拋擲該玩具一次,分別求二人得分的期望;
(2)拋擲該玩具一次,記事件B=“向上一面的點數不超過”,若事件A與B相互獨立,試求出所有的整數
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某良種培育基地正在培育一種小麥新品種A,將其與原有的一個優(yōu)良品種B進行對照試驗,兩種小麥各種植了24畝,所得畝產數據(單位:千克)如下:
品種A:357,359,367,368,375,388,392,399,400,405,412,414,415,421,423,423,427,430,430,434,443,445,451,454
品種B:363,371,374,383,385,386,391,392,394,395,397,397,400,401,401,403,406,407,410,412,415,416,422,430
(1)畫出莖葉圖.
(2)用莖葉圖處理現有的數據,有什么優(yōu)點?
(3)通過觀察莖葉圖,對品種A與B的畝產量及其穩(wěn)定性進行比較,寫出統計結論。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,四棱錐中,是邊長等于2的等邊三角形,四邊形是菱形,,,是棱上的點,.,分別是,的中點.
(1)求證:平面;
(2)求直線與平面所成角的正弦值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com