3.直線y=-2x+2恰好經(jīng)過橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1的右焦點(diǎn)和上頂點(diǎn),則橢圓的離心率等于( 。
A.$\frac{\sqrt{5}}{5}$B.$\frac{1}{2}$C.$\frac{2\sqrt{5}}{5}$D.$\frac{\sqrt{5}}{2}$

分析 求出直線的截距,求出橢圓的幾何量,然后求解橢圓的離心率即可.

解答 解:直線y=-2x+2恰好經(jīng)過橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1的右焦點(diǎn)和上頂點(diǎn),可得c=1,b=2,
所以a=$\sqrt{^{2}+{c}^{2}}=\sqrt{5}$.
所以橢圓的離心率為:e=$\frac{1}{\sqrt{5}}$=$\frac{\sqrt{5}}{5}$.
故選:A.

點(diǎn)評(píng) 本題考查橢圓的簡(jiǎn)單性質(zhì)的應(yīng)用,直線與橢圓的位置關(guān)系,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知等比數(shù)列{an+2}的公比q=2,a1=1,數(shù)列{bn}滿足:$\frac{b_n}{{{a_{n+1}}}}=\frac{1}{a_1}+\frac{1}{a_2}+…+\frac{1}{a_n}$(n∈N*).
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)證明:$\frac{{{b_{n+1}}}}{{{a_{n+2}}}}=\frac{{1+{b_n}}}{{{a_{n+1}}}}$;
(Ⅲ)求證:$(1+\frac{1}{b_1})(1+\frac{1}{b_2})…(1+\frac{1}{b_n})<\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖,A、B是圓O上的兩點(diǎn),∠AOB=120°,C是AB弧的中點(diǎn).
(1)求證:AB平分∠OAC;
(2)延長(zhǎng)OA至P使得OA=AP,連接PC,若圓O的半徑R=1,求PC的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知(1+2i) z=3-i(i為虛數(shù)單位),則復(fù)數(shù)z=$\frac{1}{5}-\frac{7}{5}i$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.設(shè)α為銳角,若cosα=$\frac{4}{5}$,則sin2α的值為( 。
A.$\frac{12}{25}$B.$\frac{24}{25}$C.$-\frac{24}{25}$D.$-\frac{12}{25}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.閱讀如圖所示的程序,該程序輸出的結(jié)果是27.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖,|$\overrightarrow{OA}$|=|$\overrightarrow{OB}$|=1,$\overrightarrow{OA}$、$\overrightarrow{OB}$的夾角是120°,$\overrightarrow{OA}$、$\overrightarrow{OC}$的夾角為30°,$\overrightarrow{OC}$=5,$\overrightarrow{OA}$、$\overrightarrow{OB}$表示$\overrightarrow{OC}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=x3+3ax2+3x+1.
(1)當(dāng)a=-$\sqrt{2}$時(shí),討論f(x)的單調(diào)性;
(2)討論f(x)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知數(shù)列1,1,2,3,5,8,x,21,34,55,根據(jù)規(guī)律推斷x的值為13.

查看答案和解析>>

同步練習(xí)冊(cè)答案