8.閱讀如圖所示的程序,該程序輸出的結(jié)果是27.

分析 模擬執(zhí)行程序框圖,依次寫出每次循環(huán)得到的S,a的值,當(dāng)a=3時不滿足條件a<3,退出循環(huán),輸出S的值為27.

解答 解:模擬執(zhí)行程序框圖,可得
a=0,S=1
滿足條件a<3,S=3,a=1
滿足條件a<3,S=9,a=2
滿足條件a<3,S=27,a=3
不滿足條件a<3,退出循環(huán),輸出S的值為27.
故答案為:27.

點評 本題主要考查了循環(huán)結(jié)構(gòu)的程序代碼,依次寫出每次循環(huán)得到的S,a的值是解題的關(guān)鍵,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.如圖一所示,四邊形ABCD為等腰梯形,AD∥BC,AD=4,BC=8,O、O1分別為BC、AD的中點,將梯形ABOO1沿直線OO1折起,使得平面ABOO1⊥平面OO1DC,得到如圖二所示的三棱臺AO1D-BOC,E為BC的中點.
(1)求證:BC⊥平面OO1E;
(2)若直線O1E與平面ABCD所成的角的正弦值為$\frac{\sqrt{10}}{10}$,求三棱錐A-BOC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知x,y滿足約束條件$\left\{\begin{array}{l}{x+y-1≥0}\\{x+2y-2≤0}\\{kx-y-2k≤0}\end{array}\right.$,其中k>0,若z=$\frac{1}{3}$x+y的最小值為0,則k=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知集合M={0,1},N={-1,0},則M∩N=( 。
A.{-1,0,1}B.{-1,1}C.{0}D.φ

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.直線y=-2x+2恰好經(jīng)過橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1的右焦點和上頂點,則橢圓的離心率等于( 。
A.$\frac{\sqrt{5}}{5}$B.$\frac{1}{2}$C.$\frac{2\sqrt{5}}{5}$D.$\frac{\sqrt{5}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知a>0,b>0,c>0,$\frac{1}{{a}^{3}}$+$\frac{1}{^{3}}$+$\frac{1}{{c}^{3}}$+3abc的最小值為m.
(Ⅰ)求m的值;
(Ⅱ)解關(guān)于x的不等式|x+1|-2x<m.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知:求所有實數(shù)k,使得存在△ABC,滿足
(1)a+b=kc;
(2)cot$\frac{A}{2}$+cot$\frac{B}{2}$=kcot$\frac{C}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.設(shè)點F1,F(xiàn)2是$\frac{{x}^{2}}{6}$+$\frac{{y}^{2}}{2}$=1的兩個焦點,過F2的直線l與橢圓相交于A、B兩點.
(1)若$\frac{{S}_{△A{F}_{1}{F}_{2}}}{{S}_{△B{F}_{1}{F}_{2}}}$=3,求此時直線l的方程;
(2)求△F1AB的面積的最大值,并求出此時直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知關(guān)于x的不等式ax2-(a+1)x+1<0.
(1)若a=-3,求不等式的解集;
(2)若a∈R,求不等式的解集;
(3)若不等式對x∈(2,3)恒成立,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案