閱讀如圖所示的程序框圖,運(yùn)行相應(yīng)的程序,則程序運(yùn)行后輸出的結(jié)果為
 

考點(diǎn):程序框圖
專題:算法和程序框圖
分析:算法的功能是求S=0+lg
1
3
+lg
3
5
+lg
5
7
+…+lg
i
i+2
的值,根據(jù)條件確定跳出循環(huán)的i值.
解答: 解:由程序框圖知:算法的功能是求S=0+lg
1
3
+lg
3
5
+lg
5
7
+…+lg
i
i+2
的值,
∵S=0+lg
1
3
+lg
3
5
+lg
5
7
+…+lg
7
9
=lg
1
9
>-1,
S=0+lg
1
3
+lg
3
5
+lg
5
7
+…+lg
9
11
=lg
1
11
<-1

∴跳出循環(huán)的i值為9,∴輸出i=9.
故答案為9;
點(diǎn)評(píng):本題考查了循環(huán)結(jié)構(gòu)的程序框圖,根據(jù)框圖的流程判斷算法的功能是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(x,-1)
,
b
=(2,y)
,其中x隨機(jī)選自集合{-1,1,3},y隨機(jī)選自集合{-2,2,6},
(Ⅰ)求
a
b
的概率;        
(Ⅱ)求
a
b
的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若|x+1|+|2x+a|≥-y2+2y+2對(duì)于任意的x,y恒成立,則實(shí)數(shù)a的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=Asinwx+Bcoswx(其中A、B、w是常數(shù)w>0)的最小周期為2,并且當(dāng)x=
1
3
取得最大值2.
(1)求函數(shù)f(x)的表達(dá)式
(2)在閉區(qū)間[
21
4
,
23
4
]上是否存在f(x)對(duì)稱軸,如果存在,求出其對(duì)稱軸方程;如果不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=3x-6的零點(diǎn)是( 。
A、0B、3C、2D、-6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

銀川唐徠回民中學(xué)高二年級(jí)某同學(xué)從家到學(xué)校騎自行車往返的時(shí)速分別為a和b(a<b),其全程的平均時(shí)速為u,則(  )
A、a<u<
ab
B、u=
a+b
2
C、
ab
<u<
a+b
2
D、u=
ab

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)Sn是數(shù)列{an}的前n項(xiàng)和且n∈N+,所有項(xiàng)an>0,且Sn=
1
4
a
2
n
+
1
2
an-
3
4

(1)證明:{an}是等差數(shù)列;
(2)求數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,在邊長為5+
2
的正方形ABCD中,以A為圓心畫一個(gè)扇形,以O(shè)為圓心畫一個(gè)圓,M、N,K為切點(diǎn),以扇形為圓錐的側(cè)面,以圓O為圓錐底面,圍成一個(gè)圓錐,則圓錐的全面積與體積分別是
 
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

有三個(gè)游戲規(guī)則如下,袋子中分別裝有形狀、大小相同的球,從袋中無放回地取球,
游戲1游戲2游戲3
袋中裝有3個(gè)黑球和2個(gè)白球袋中裝有2個(gè)黑球和2個(gè)白球袋中裝有3個(gè)黑球和1個(gè)白球
從袋中取出2個(gè)球從袋中取出2個(gè)球從袋中取出2個(gè)球
若取出的兩個(gè)球同色,則甲勝若取出的兩個(gè)球同色,則甲勝若取出的兩個(gè)球同色,則甲勝
若取出的兩個(gè)球不同色,則乙勝若取出的兩個(gè)球不同色,則乙勝若取出的兩個(gè)球不同色,則乙勝
問其中不公平的游戲是( 。
A、游戲2
B、游戲3
C、游戲1和游戲2
D、游戲1和游戲3

查看答案和解析>>

同步練習(xí)冊(cè)答案