分析 求出正四面體的底面面積以及高,即可求解正四面體的體積.
解答 解:作正四面體的高SO,垂足為O,則O為等邊三角形ABC的中心,
∵AB=a,∴AD=$\frac{\sqrt{3}}{2}$a,AO=$\frac{2}{3}$AD=$\frac{\sqrt{3}}{3}$a,
∴SO=$\sqrt{A{S}^{2}-A{O}^{2}}$=$\frac{\sqrt{6}}{3}$a,
∴正四面體的體積V=$\frac{1}{3}$S△ABC•SO=$\frac{1}{3}×\frac{\sqrt{3}}{4}{a}^{2}×\frac{\sqrt{6}}{3}a$=$\frac{\sqrt{2}}{12}$a3.
故答案為:$\frac{{\sqrt{2}}}{12}{a^3}$.
點評 本題考查幾何體的體積的求法,求解正四面體的高是解題的關(guān)鍵,屬于中檔題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 0 | B. | 2 | C. | -2 | D. | -4 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 496 | B. | 33 | C. | 31 | D. | $\frac{31}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $f(x)=\sqrt{x^2}\;\;,\;\;g(x)=x$ | B. | $f(x)=\sqrt{x^2}\;,\;\;g(t)=\left\{\begin{array}{l}t,t≥0\\-t,t<0\end{array}\right.$ | ||
C. | $f(x)=\root{3}{x^3}\;\;,\;\;g(x)=|x|$ | D. | $f(t)=t\;,\;\;g(x)=\frac{x^2}{x}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | n>12 | B. | n<12 | C. | n<13 | D. | n>13 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com