分析 解法一:由題意可得當(dāng)x=-$\frac{π}{8}$時(shí),函數(shù)取得最值,故有$\frac{\sqrt{2}}{2}$-$\frac{\sqrt{2}}{2}$a=$\sqrt{{1+a}^{2}}$,化簡(jiǎn)求得a的值.
解法二:由題意利用對(duì)稱的性質(zhì)可得f(0)=f(-$\frac{π}{4}$),由此求得a的值.
解答 解:解法一:由于函數(shù)y=cos2x+asin2x 的圖象關(guān)于直線x=-$\frac{π}{8}$對(duì)稱,故當(dāng)x=-$\frac{π}{8}$時(shí),函數(shù)取得最值,
故有$\frac{\sqrt{2}}{2}$-$\frac{\sqrt{2}}{2}$a=$\sqrt{{1+a}^{2}}$,化簡(jiǎn)可得 (a+1)2=0,∴a=-1,
故答案為:-1.
解法二:由于函數(shù)y=f(x)=cos2x+asin2x 的圖象關(guān)于直線x=-$\frac{π}{8}$對(duì)稱,
故有f(0)=f(-$\frac{π}{4}$),即1=-a,故有a=-1,
故答案為:-1.
點(diǎn)評(píng) 本題主要考查三角函數(shù)的圖象的對(duì)稱性,三角函數(shù)的最值,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | c>a>b | B. | a>c>b | C. | a>b>c | D. | c>b>a |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | b<a<c | B. | b<c<a | C. | a<b<c | D. | a<c<b |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com