在平面直角坐標(biāo)系xOy中,動(dòng)點(diǎn)M到直線x=-1的距離等于它到圓F:(x-2)2+y2=1的點(diǎn)的最小距離.
(1)求點(diǎn)M的軌跡方程;
(2)已知過點(diǎn)F的直線與點(diǎn)M的軌跡交于A,B兩點(diǎn),且|AF|=8,求|BF|的長.
(1)設(shè)動(dòng)點(diǎn)M(x,y),則
∵動(dòng)點(diǎn)M到直線x=-1的距離等于它到圓F:(x-2)2+y2=1的點(diǎn)的最小距離
∴|x+1|=
(x-2)2+(y-0)2-1
,…(3分)
化簡得:6x-2+2|x+1|=y2,
當(dāng)x≥-1時(shí),y2=8x;…(5分)
當(dāng)x<-1時(shí),y2=4x-4<-8,不合題意.
所以點(diǎn)M的軌跡方程為:y2=8x.…(7分)
(2)拋物線的準(zhǔn)線方程為x=-2.
過點(diǎn)A作準(zhǔn)線的垂線AM,垂足為M,AM交y軸于點(diǎn)E,過點(diǎn)A作x軸垂線,垂足為H.
過點(diǎn)B作準(zhǔn)線的垂線BN,垂足為N,
由拋物線的定義知:AF=AM=8.
因?yàn)镸E=OF=2,所以AE=6,F(xiàn)H=4.
在Rt△AHF中,AF=8,F(xiàn)H=4,所以∠AFH=60°.…(10分)
直線AB的方程為y=
3
(x-2)代入y2=8x,可得
3x2-20x+12=0
∴x=6,或x=
2
3

∴A(6,4
3
),B(
2
3
,-
4
3
3
).
∴BF=BN=
2
3
+2=
8
3
.…(14分)
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)已知橢圓,它的離心率為,直線與以原點(diǎn)為圓心,以橢圓的短半軸長為半徑的圓相切.⑴求橢圓的方程;⑵設(shè)橢圓的左焦點(diǎn)為,左準(zhǔn)線為,動(dòng)直線垂直于直線,垂足為點(diǎn),線段的垂直平分線交于點(diǎn),求動(dòng)點(diǎn)的軌跡的方程;⑶將曲線向右平移2個(gè)單位得到曲線,設(shè)曲線的準(zhǔn)線為,焦點(diǎn)為,過作直線交曲線兩點(diǎn),過點(diǎn)作平行于曲線的對稱軸的直線,若,試證明三點(diǎn)為坐標(biāo)原點(diǎn))在同一條直線上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線,直線兩點(diǎn),是線段的中點(diǎn),過軸的垂線交于點(diǎn).(1)證明:拋物線在點(diǎn)處的切線與平行;(2)是否存在實(shí)數(shù)使NANB,若存在,求的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知,點(diǎn)滿足,記點(diǎn)的軌跡為.
(Ⅰ)求軌跡的方程;(Ⅱ)若直線過點(diǎn)且與軌跡交于、兩點(diǎn). (i)設(shè)點(diǎn),問:是否存在實(shí)數(shù),使得直線繞點(diǎn)無論怎樣轉(zhuǎn)動(dòng),都有成立?若存在,求出實(shí)數(shù)的值;若不存在,請說明理由.(ii)過、作直線的垂線、,垂足分別為、,記
,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在平面直角坐標(biāo)系xOy中,動(dòng)點(diǎn)P到兩點(diǎn)(-
3
,0),(
3
,0)的距離之和等于4,設(shè)點(diǎn)P的軌跡為曲線C,直線l過點(diǎn)E(-1,0)且與曲線C交于A,B兩點(diǎn).
(1)求曲線C的軌跡方程;
(2)若AB中點(diǎn)橫坐標(biāo)為-
1
2
,求直線AB的方程;
(3)是否存在△AOB面積的最大值,若存在,求出△AOB的面積;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知點(diǎn)(1,1)是橢圓
x2
4
+
y2
2
=1
某條弦的中點(diǎn),則此弦所在的直線方程為:______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知雙曲線C:x2-y2=1,l:y=kx+1
(1)求直線L的斜率的取值范圍,使L與C分別有一個(gè)交點(diǎn),兩個(gè)交點(diǎn),沒有交點(diǎn).
(2)若Q(1,1),試判斷以Q為中點(diǎn)的弦是否存在,若存在,求出直線的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,線段AB的兩個(gè)端點(diǎn)A、B分別分別在x軸、y軸上滑動(dòng),|AB|=5,點(diǎn)M是AB上一點(diǎn),且|AM|=2,點(diǎn)M隨線段AB的運(yùn)動(dòng)而變化.
(1)求點(diǎn)M的軌跡方程;
(2)設(shè)F1為點(diǎn)M的軌跡的左焦點(diǎn),F(xiàn)2為右焦點(diǎn),過F1的直線交M的軌跡于P,Q兩點(diǎn),求S△PQF2的最大值,并求此時(shí)直線PQ的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若拋物線的焦點(diǎn)與橢圓的右焦點(diǎn)重合,則的值為( )
A.B.2 C.D.4

查看答案和解析>>

同步練習(xí)冊答案