分析 根據(jù)已知條件得出2S5-2S4=a6-3-(a5-3)=a6-a5=2a5,得出3a5=a6,然后根據(jù)兩項的關系得出3a5=a5q,答案可得.
解答 解:∵a5=2S4+3,a6=2S5+3,即2S4=a5-3,2S5=a6-3
∴2S5-2S4=a6-3-(a5-3)=a6-a5=2a5
即3a5=a6
∴3a5=a5q
解得q=3,
∵a6=2S5+3,
∴34a1=2×$\frac{{a}_{1}•(1-{3}^{4})}{1-3}$+3,
∴a1=3,
∴Sn=$\frac{3(1-{3}^{n})}{1-3}$=$\frac{3}{2}({3}^{n}-1)$.
點評 本題主要考查了等比數(shù)列的性質(zhì).解題的關鍵是利用S5-S4=a5得出a5、a6的關系,屬中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 7+2$\sqrt{3}$ | B. | 6+2$\sqrt{3}$ | C. | 7+4$\sqrt{3}$ | D. | $6+4\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\sqrt{3}$:2 | B. | 4:$\sqrt{3}$ | C. | $\sqrt{5}$:4 | D. | 3:4 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 0,2 | B. | 0,$\frac{1}{2}$ | C. | 0,-$\frac{1}{2}$ | D. | 2,-$\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{\sqrt{5}π}{2}$+2 | B. | $\frac{\sqrt{5}+1}{2}π+\sqrt{3}$ | C. | $\frac{\sqrt{5}π}{2}+\sqrt{3}$ | D. | $\frac{\sqrt{5}+1}{2}π+2$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -cos$\frac{α}{2}$ | B. | cos$\frac{α}{2}$ | C. | sin$\frac{α}{2}$ | D. | -sin$\frac{α}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com