變量x,y滿足約束條件
x-3y+2≤0
x+y-6≤0
x-y≥0
時,x-2y+m≤0恒成立,則實數(shù)m的取值范圍為(  )
A、[0,+∞)
B、[1,+∞)
C、(-∞,3]
D、(-∞,0]
考點:簡單線性規(guī)劃
專題:計算題,作圖題,不等式的解法及應(yīng)用
分析:由題意作出其平面區(qū)域,x-2y+m≤0表示了直線上方的部分,故由
y=6-x
x=3y-2
解得,x=4,y=2;代入即可.
解答: 解:由題意作出其平面區(qū)域,

x-2y+m≤0表示了直線上方的部分,
故由
y=6-x
x=3y-2
解得,x=4,y=2;
則4-2×2+m≤0,
則m≤0.
故選D.
點評:本題考查了簡單線性規(guī)劃,作圖要細致認真,屬于中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的離心率為
1
2
,其右焦點到點P(-3,1)的距離為
17

(1)求橢圓C的標準方程;
(2)若直線l:y=kx+m與橢圓C相交于A,B兩點(A,B不是左右頂點),且以AB為直徑的圓過橢圓C的左頂點.求證:直線l過定點,并求出該定點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若f(x)=x2-2(a-1)x+2在(-∞,3]上是減函數(shù),則a的取值范圍是( 。
A、a>4B、a<4
C、a≥4D、a≤4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,四棱柱ABCD-A1B1C1D1的底面ABCD是正方形,O為底面中心,A1O⊥平面ABCD,AB=
2
,AA1=2.
(1)證明:AA1⊥BD
(2)證明:平面A1BD∥平面CD1B1;
(3)求三棱柱ABD-A1B1D1的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}滿足a1=2,an+1=
an2-2an+2
+1.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設(shè)bn=an+an+1-2,證明
1
b1
+
1
b2
+…+
1
bn
n+1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù):f(x)=x2-4|x|+1,若關(guān)于x的方程:f(x)=2k恰有四個不等的實數(shù)根,則實數(shù)k的取值范圍為( 。
A、-
3
2
<k<
1
2
B、-3<k<1
C、-6<k<2
D、k>-
3
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,P是⊙O外一點,PA是切線,割線PBC經(jīng)過圓心O,且PB=
1
2
BC.
(Ⅰ)求證:PA=AC;
(Ⅱ)若點D是弧AC的中點,PD與⊙O交于另一點E,PB=1,求PE的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知tanα和cosα是關(guān)于x的方程5x2-mx+4=0的兩根,且α在第二象限
(1)求tanα及m的值;
(2)求
2sin2α-sinα•cosα+3cos2α
1+sin2α
的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知F是拋物線x2=4y的焦點,P是該拋物線上的動點,則線段PF中點軌跡方程是( 。
A、x2=y-
1
2
B、x2=2y-
1
16
C、x2=2y-2
D、x2=2y-1

查看答案和解析>>

同步練習冊答案