如圖,P是⊙O外一點,PA是切線,割線PBC經(jīng)過圓心O,且PB=
1
2
BC.
(Ⅰ)求證:PA=AC;
(Ⅱ)若點D是弧AC的中點,PD與⊙O交于另一點E,PB=1,求PE的長.
考點:與圓有關(guān)的比例線段
專題:立體幾何
分析:(I)利用切割線定理可得PA2=PB•PC,即可得出;
(II)連接OD,CD,利用D為
AC
的中點,可得∠COD=
1
2
∠AOC=60°
,PB=1,PC=3,CD=1.由余弦定理得PD2=PC2+CD2-2PC•CDcos60°可得PD=
7
,再由切割線定理可得PA2=PE•PD,即可得出.
解答: (Ⅰ)證明:設(shè)BC=2R,則PB=R,PC=3R,
∵PA為切線,由切割線定理得,PA2=PB•PC=3R2,
∴PA=
3
R.
連接OA,PA⊥OA,
∴∠POA=60°.∠AOC=120°.
∴AC=
3
R,∴PA=AC.
(Ⅱ) 解:連接OD,CD,
∵D為
AC
的中點,
∠COD=
1
2
∠AOC=60°

而OC=OD,∠PCD=60°,
∵PB=1,
∴PC=3,CD=1,
由余弦定理得PD2=PC2+CD2-2PC•CDcos60°=32+12-2×3×
1
2
=7,
∴PD=
7
,
再由切割線定理得,PA2=PE•PD,
3=
7
PE

∴PE=
3
7
7
點評:本題考查了切割線定理、余弦定理、圓的切線的性質(zhì)、直角三角形的邊角關(guān)系,考查了推理能力與計算能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知a>0,給出下列兩個命題:
p:函數(shù)f(x)=ln(x+1)-ln
a
2-x
小于零恒成立;
q:關(guān)于x的方程x2+(1-a)x+1=0,一個根在(0,1)上,另一個根在(1,2)上,若p∨q為真命題,p∧q為假命題,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)x,y滿足約束條件
3x-y-6≤0
x-y+2≥0
x≥0
y≥0
,則目標(biāo)函數(shù)z=ax+by(a>0,b>0)的最大值為12,則
2
a
+
3
b
的最小值為( 。
A、
25
3
B、
25
6
C、6
D、5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

變量x,y滿足約束條件
x-3y+2≤0
x+y-6≤0
x-y≥0
時,x-2y+m≤0恒成立,則實數(shù)m的取值范圍為( 。
A、[0,+∞)
B、[1,+∞)
C、(-∞,3]
D、(-∞,0]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=loga(x+b)(a>0,a≠1)的大致圖象如圖所示,則函數(shù)g(x)=ax+b的大致圖象為( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個空間幾何體的三視圖如圖所示,則該幾何體的體積為( 。
A、12B、18C、27D、54

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=log3
1-x
1-mx
(m≠1)是奇函數(shù).
(1)求函數(shù)y=f(x)的解析式;
(2)設(shè)g(x)=
1-x
1-mx
,用函數(shù)單調(diào)性的定義證明;函數(shù)y=g(x)在區(qū)間(-1,1)上單調(diào)遞減;
(3)解不等式:f(t+3)<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

原命題:“設(shè)a、b、c∈R,若ac2>bc2則a>b”和它的逆命題、否命題、逆否命題這四個命題中,真命題共有( 。
A、1個B、2個C、3個D、0個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

圓 C1:(x+2)2+(y-2)2=4和圓C2:(x-2)2+(y-5)2=16的位置關(guān)系是( 。
A、外離B、相交C、內(nèi)切D、外切

查看答案和解析>>

同步練習(xí)冊答案