已知函數(shù)f(5x)=2xlog25+14,則f(2)+f(4)+f(8)+…+f(29)+f(210)=
 
考點(diǎn):數(shù)列的求和,數(shù)列的函數(shù)特性
專題:等差數(shù)列與等比數(shù)列
分析:利用已知條件求出函數(shù)的解析式,然后求出通項(xiàng)公式,即可求解數(shù)列的和.
解答: 解:函數(shù)f(5x)=2xlog25+14,令5x=t,則x=log5t,
∴f(t)=2log5tlog25+14,
∴f(2n)=2log52nlog25+14=2nlog52log25+14=2n+14.
∴f(2)+f(4)+f(8)+…+f(29)+f(210)=2(1+2+3+…+10)+14×10
=
1+10
2
×10
+140=250.
故答案為:250.
點(diǎn)評(píng):本題考查數(shù)列求和,數(shù)列與函數(shù)結(jié)合問(wèn)題,函數(shù)的解析式的求法,考查計(jì)算能力以及轉(zhuǎn)化思想的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一個(gè)幾何體的三視圖如圖所示,其中正視圖和側(cè)視圖是腰長(zhǎng)為1的兩個(gè)全等的等腰直角三角形,若該幾何體的所有頂點(diǎn)在同一球面上,則球的表面積是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

x,y滿足約束條件
x+y-2≤0
x-2y-2≤0
2x-y+2≥0
,若z=y-ax取得最大值的最優(yōu)解不唯一,則實(shí)數(shù)a的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)A(2,1),拋物線y2=4x的焦點(diǎn)是F,若拋物線上存在一點(diǎn)P,使得|PA|+|PF|最小,則P點(diǎn)的坐標(biāo)為( 。
A、(2,1)
B、(1,1)
C、(
1
2
,1)
D、(
1
4
,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

根據(jù)如圖的框圖回答后面的問(wèn)題.
(1)當(dāng)輸入的x值為1時(shí),輸出的值為y值多大?要使輸出的y值為10,輸入的x值應(yīng)該為多少?
(2)若視x為自變量,y為函數(shù)值,試寫(xiě)出函數(shù)y=f(x)的解析式;
(3)輸入的x值和輸出的y值可能相等嗎?若能,x的輸入值為多少?若不能,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知二元一次不等式組
4x+3y≥12
x≤3
y≤4
表示的平面區(qū)域?yàn)镈,若圓O:x2+y2=r2(r>0)上存在點(diǎn)(x0,y0)∈D,則r的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

拋物線y2=4x上一點(diǎn)P到直線x=-1的距離與到點(diǎn)Q(2,2)的距離之差的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=sin(2x+θ),(-
π
2
<θ<
π
2
)圖象的一條對(duì)稱軸是x=-
π
8

(1)求θ的值.
(2)求函數(shù)?(x)的單調(diào)減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線x-y+a=0與圓x2+y2=4交于不同兩點(diǎn)A、B,O為坐標(biāo)原點(diǎn),若向量
OA
、
OB
滿足|
OA
+
OB
|=|
OA
-
OB
|,則a=( 。
A、±1
B、±2
C、±
1
2
D、±
3

查看答案和解析>>

同步練習(xí)冊(cè)答案