12.已知2m>2n,則m,n的大小關(guān)系為( 。
A.m>nB.m≥nC.m<nD.m≤n

分析 直接利用指數(shù)式的單調(diào)性得答案.

解答 解:∵函數(shù)y=2x是定義在實(shí)數(shù)集上的增函數(shù),又2m>2n,
∴m>n,
故選:A.

點(diǎn)評(píng) 本題考查指數(shù)函數(shù)的圖象和性質(zhì),是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.某高中數(shù)學(xué)老師從一張測(cè)試卷的12道選擇題、4道填空題、6道解答題中任取3道題作分析,則在取到選擇題時(shí)解答題也取到的概率為( 。
A.$\frac{{C_{12}^1•C_6^1•C_{20}^1}}{{C_{22}^3-C_{10}^3}}$
B.$\frac{{C_{12}^1•C_6^1•C_4^1+C_{12}^1•C_6^2}}{{C_{22}^3-C_{10}^3}}$
C.$\frac{{C_{12}^1•(C_6^1•C_4^1+C_6^2)+C_{12}^2•C_6^1}}{{C_{22}^3-C_{10}^3}}$
D.$\frac{{C_{22}^3-C_{10}^3-C_{16}^3}}{{C_{22}^3-C_{10}^3}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.設(shè)a=0.80.8,b=0.81.2,c=1.20.8則( 。
A.c>a>bB.c>b>aC.a>b>cD.b>a>c

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.已知曲線f(x)=(x+a)lnx在點(diǎn)(1,f(1))處的切線與曲線2x-y+2=0平行,則實(shí)數(shù)a=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.下面給出的命題中:
①已知線性回歸方程為$\widehat{y}$=3+2x,當(dāng)變量x增加2個(gè)單位,其預(yù)報(bào)值平均增加4個(gè)單位;
②線性相關(guān)系數(shù)r越大,兩個(gè)變量的線性相關(guān)性越強(qiáng);反之,線性相關(guān)性越;
③已知隨機(jī)變量ξ服從正態(tài)分布N(0,σ2),且P(-2≤ξ≤0)=0.4,則P(ξ>2)=0.2;
④$\int_{\;0}^π{\;sinxdx}$的值等于2;
⑤已知$\frac{2}{2-4}+\frac{6}{6-4}=2,\frac{5}{5-4}+\frac{3}{3-4}=2,\frac{7}{7-4}+\frac{1}{1-4}=2,\frac{10}{10-4}+\frac{-2}{-2-4}=2$,依照以上各式的規(guī)
律,得到一般性的等式為$\frac{n}{n-4}+\frac{8-n}{(8-n)-4}=2(n≠4)$.
其中是真命題的序號(hào)有①④⑤.(寫(xiě)出所有正確命題的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知△ABC的三條邊為a,b,c,滿足a+b≥2c,求證:c≤60°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}{x-y≤1}\\{2x+y≤5}\\{x≥1}\end{array}\right.$,則函數(shù)z=x+3y的最大值為( 。
A.10B.8C.5D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.經(jīng)過(guò)兩點(diǎn)(5,0),(2,-5)的直線方程為( 。
A.5x+3y-25=0B.5x-3y-25=0C.3x-5y-25=0D.5x-3y+25=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知數(shù)列{an}是公差為-2的等差數(shù)列,且a3=a2+a5
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式.
(Ⅱ)求數(shù)列{an}的前n項(xiàng)和Sn的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案