18.若函數(shù)f($\sqrt{x+1}$)的定義域?yàn)閇0,3],則函數(shù)y=f(1-x)的定義域[-1,0].

分析 根據(jù)復(fù)合函數(shù)定義域之間的關(guān)系進(jìn)行求解即可.

解答 解:函數(shù)f($\sqrt{x+1}$)的定義域?yàn)閇0,3],即0≤x≤3,
那么:1≤x+1≤4
∴1$≤\sqrt{x+1}$≤2
因此:函數(shù)y=f(1-x)中的1-x范圍是:1≤1-x≤2,
解得:-1≤x≤0
所以函數(shù)函數(shù)y=f(1-x)的定義域[-1,0].
故答案為:[-1,0].

點(diǎn)評(píng) 本題主要考查函數(shù)的定義域的求解,要求熟練掌握常見(jiàn)函數(shù)成立的條件.屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.已知圓錐母線與旋轉(zhuǎn)軸所成的角為30°,母線的長(zhǎng)為$\sqrt{2}$,則其底面面積為$\frac{π}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知函數(shù)f(x)=2sin(2ωx+$\frac{π}{4}$)(ω>0)的最小正周期為π.
(1)求ω的值;
(2)求f(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.在△ABC中,a=15,b=10,C=60°,則S△ABC等于( 。
A.$\frac{75}{2}$B.$\frac{{75\sqrt{3}}}{2}$C.$\frac{{75\sqrt{2}}}{2}$D.$\frac{{75\sqrt{6}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.由xy=1,y=x,x=3所圍成的封閉區(qū)域的面積為( 。
A.2ln3B.2+ln3C.4-2ln3D.4-ln3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.化簡(jiǎn)2n-Cn1×2n-1+Cn2×2n-2+…+(-1)n-1Cnn-1×2=( 。
A.1B.(-1)nC.1+(-1)nD.1-(-1)n

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.設(shè)銳角△ABC的三內(nèi)角A,B,C,所對(duì)邊的邊長(zhǎng)分別為a,b,c,且a=1,B=2A,則b的取值范圍為$(\sqrt{2},\sqrt{3})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.如圖,在△ABC中,∠BAC=90°,以AB為直徑的⊙O交BC于點(diǎn)D,E是邊AC上一點(diǎn),BE與⊙O交于點(diǎn)F,連接DF.
(1)證明:C,D,F(xiàn),E四點(diǎn)共圓;
(2)若EF=3,AE=5,求BD•BC的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.有下列程序:

若輸入4,則其輸出結(jié)果為( 。
A.4B.16C.4^2D.16^2

查看答案和解析>>

同步練習(xí)冊(cè)答案