10.已知非零向量$\overrightarrow{a}$=(m2-1,m+1)與向量$\overrightarrow$=(1,-2)平行,則實(shí)數(shù)m的值為(  )
A.-1或$\frac{1}{2}$B.1或$-\frac{1}{2}$C.-1D.$\frac{1}{2}$

分析 根據(jù)平面向量共線(xiàn)定理的坐標(biāo)表示,列出方程解方程,求出m的值.

解答 解:非零向量$\overrightarrow a=({{m^2}-1,m+1})$與向量$\overrightarrow b=({1,-2})$平行,
∴-2(m2-1)-1×(m+1)=0,
解得m=$\frac{1}{2}$或m=-1(不合題意,舍去);
∴實(shí)數(shù)m的值為$\frac{1}{2}$.
故選:D.

點(diǎn)評(píng) 本題考查了平面向量共線(xiàn)定理的坐標(biāo)表示與應(yīng)用問(wèn)題,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.對(duì)于函數(shù)y=f(x),若存在定義域D內(nèi)某個(gè)區(qū)間[a,b],使得y=f(x)在[a,b]上的值域也是[a,b],則稱(chēng)函數(shù)y=f(x)在定義域D上封閉,如果函數(shù)f(x)=$\frac{kx}{1+{x}^{2}}$(k≠0)在R上封閉,那么實(shí)數(shù)k的取值范圍是(-∞,-1)∪(1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知復(fù)數(shù)z1=a-2i,z2=2+i(i為虛數(shù)單位),若$\frac{{z}_{1}}{{z}_{2}}$為純虛數(shù),則實(shí)數(shù)a的值為( 。
A.-4B.-1C.1D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.在△ABC的內(nèi)角A,B,C的對(duì)邊分別是a,b,c,若b2=ac,c=2a,則cosC=( 。
A.$\frac{{\sqrt{2}}}{4}$B.$-\frac{{\sqrt{2}}}{4}$C.$\frac{3}{4}$D.$-\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.已知函數(shù)f(x)=2sin(ωx+$\frac{π}{3}$)的部分圖象如圖所示,則ω=2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.設(shè)向量$\overrightarrow{a}$=(-1,-2),$\overrightarrow$=(m,m+1),$\overrightarrow{a}$⊥$\overrightarrow$,則|$\overrightarrow$|等于(  )
A.$\frac{2}{3}$B.$\frac{\sqrt{5}}{3}$C.$\frac{5}{9}$D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.全集U={(x,y)|x∈R,y∈R},集合S⊆U,若S中的點(diǎn)在直角坐標(biāo)平面內(nèi)形成的圖形關(guān)于原點(diǎn)、坐標(biāo)軸、直線(xiàn)y=x均對(duì)稱(chēng),且(2,3)∈S,則S中元素個(gè)數(shù)至少有(  )
A.4個(gè)B.6個(gè)C.8個(gè)D.10個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.如圖,在平行四邊形ABCD中,F(xiàn)是CD的中點(diǎn),AF與BD交于E,求證:E為線(xiàn)段BD的三等分.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.設(shè)等比數(shù)列{an}的前n項(xiàng)和為Sn,已知a3=$\frac{3}{2}$,S3=$\frac{9}{2}$.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn=log2$\frac{6}{{a}_{2n+1}}$,Tn為數(shù)列{bn}的前n項(xiàng)和,求使Tn=$\frac{n}{2}$+105成立的n的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案