A. | $\frac{17}{25}$ | B. | $\frac{25}{7}$ | C. | $\frac{7}{25}$ | D. | $\frac{25}{17}$ |
分析 原式分母看做“1”,利用同角三角函數(shù)間基本關系化簡,再弦化切后將tanα的值代入計算即可求出值.
解答 解:∵tanα=-2,
∴原式=$\frac{\frac{1}{4}si{n}^{2}α+\frac{2}{5}co{s}^{2}α}{si{n}^{2}α+co{s}^{2}α}$=$\frac{\frac{1}{4}ta{n}^{2}α+\frac{2}{5}}{ta{n}^{2}α+1}$=$\frac{\frac{1}{4}×4+\frac{2}{5}}{4+1}$=$\frac{7}{25}$.
故選:C.
點評 此題考查了同角三角函數(shù)基本關系的運用,熟練掌握基本關系是解本題的關鍵,屬于基礎題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\sqrt{10}$ | B. | $\sqrt{13}$ | C. | 3$\sqrt{2}$ | D. | 2$\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 27 | B. | 54 | C. | 99 | D. | 108 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -$\frac{1}{2}$ | B. | -1 | C. | -$\frac{2}{3}$ | D. | -2 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com