4.等差數(shù)列{an}中,a1=-1,a3=3,an=9,則n=6.

分析 根據(jù)等差數(shù)列的通項(xiàng)公式先求出d,然后在利用等差數(shù)列的通項(xiàng)公式求解即可.

解答 解:等差數(shù)列{an}中,a1=-1,a3=3,
∴a3=-1+2d=3,
∴d=2,
∵an=9=-1+(n-1)×2,
解得n=6,
故答案為6.

點(diǎn)評(píng) 本題考查學(xué)生掌握等差數(shù)列的通項(xiàng)公式,是一道綜合題

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$經(jīng)過一、三象限的漸近線為m,若圓${x^2}+{y^2}-2\sqrt{5}x-2\sqrt{5}y+6=0$上至少有三個(gè)不同的點(diǎn)到m的距離為1,則此雙曲線的離心率e的取值范圍為(  )
A.$[{\frac{{\sqrt{5}}}{2},2\sqrt{5}}]$B.$({1,\sqrt{5}}]$C.$[{\frac{{\sqrt{5}}}{2},\sqrt{5}}]$D.$[{\sqrt{5},2\sqrt{5}}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$中,已知a=4,b=3,則雙曲線的離心率為( 。
A.$\frac{5}{4}$B.$\frac{{\sqrt{7}}}{4}$C.$\frac{5}{3}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.如圖,在直三棱柱ABC-A1B1C1中,∠BAC=90°,$AC=2\sqrt{3}$,$A{A_1}=\sqrt{3}$,AB=2,點(diǎn)D在棱B1C1上,且B1C1=4B1D.
(Ⅰ)求證:BD⊥A1C;
(Ⅱ)求二面角B-A1D-B1的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.直線l的傾斜角為$\frac{π}{3}$,將l繞它與x軸的交點(diǎn)逆時(shí)針方向旋轉(zhuǎn)$\frac{π}{2}$后所得直線的斜率為k,則將k值執(zhí)行如圖所示程序后,輸出S值為( 。
A.$\sqrt{3}$B.-$\sqrt{3}$C.$\frac{\sqrt{3}}{3}$D.-$\frac{\sqrt{3}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,已知Sn+1=pSn+q(n∈N*,p,q為常數(shù)),a1=2,a2=1,a3=q-3p.
(1)求p,q的值;
(2)求數(shù)列{an}的通項(xiàng)公式;
(3)記集合M={n|λ≥$\frac{{S}_{n}}{n{a}_{n}}$,n∈N*},若M中僅有3個(gè)元素,求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.如圖,在四棱錐P-ABCD中,側(cè)面PCD丄底面ABCD,△PCD為等邊三角形,M為BC中點(diǎn),N為CD中點(diǎn).若底面ABCD是矩形且AD=2$\sqrt{2}$,AB=2.
(1)證明:MN∥平面PBD;
(2)證明:AM丄平面PMN.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.“x<2”是“x<1”的必要不充分條件.(從“充分不必要”、“必要不充分”、“充要”和“既不充分又不必要”中,選出適當(dāng)?shù)囊环N填空)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知在△ABC中,a、b、c分別為角A、B、C的對(duì)邊,且b2、c2是關(guān)于x的一元二次方程x2-(a2+bc)x+m=0的兩根.
(1)求角A的值;
(2)若$a=\sqrt{3}$,設(shè)角B=θ,△ABC周長(zhǎng)為y,求y=f(θ)的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案