18.在等比數(shù)列{an}中,若公比q=4,S3=21,則該數(shù)列的通項(xiàng)公式an=( 。
A.4n-1B.4nC.3nD.3n-1

分析 設(shè)出等比數(shù)列的首項(xiàng),結(jié)合已知列式求得首項(xiàng),代入等比數(shù)列的通項(xiàng)公式得答案.

解答 解:設(shè)等比數(shù)列{an}的首項(xiàng)為a1,由公比q=4,S3=21,
得$\frac{{a}_{1}(1-{4}^{3})}{1-4}=21$,∴a1=1.
則${a}_{n}={4}^{n-1}$.
故選:A.

點(diǎn)評(píng) 本題考查等比數(shù)列的通項(xiàng)公式,考查了等比數(shù)列的前n項(xiàng)和,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=3•2x+$\frac{3}{{2}^{x}}$,x∈R.
(1)判斷函數(shù)f(x)的奇偶性,并說明理由;
(2)利用函數(shù)單調(diào)性定義證明:f(x)在(0,+∞)上是增函數(shù);
(3)若f(x)≥k+log2$\frac{8}{m}$•log2(2m)(m>0,k∈R)對(duì)任意的x∈R,任意的m∈(0,+∞)恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.若函數(shù)y=f(x)的值域是$[\frac{1}{4},4]$,則函數(shù)y=f(x)-2$\sqrt{f(x)}$的最小值是-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.對(duì)于函數(shù)y=f(x),若在其定義域內(nèi)存在x0,使得x0•f(x0)=1成立,則稱x0為函數(shù)f(x)的“反比點(diǎn)”.下列函數(shù)中具有“反比點(diǎn)”的是①②④.
①f(x)=-2x+2$\sqrt{2}$;  ②f(x)=sinx,x∈[0,2π];
③f(x)=x+$\frac{1}{x}$,x∈(0,+∞);④f(x)=ex;  ⑤f(x)=-2lnx.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.平面向量$\vec a$與$\vec b$的夾角為60°,$\vec a=(3,\;4)$,$|{\vec b}|=1$,則$|{\vec a-2\vec b}|$=( 。
A.$\sqrt{19}$B.$2\sqrt{6}$C.$\sqrt{34}$D.$\sqrt{39}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知正方體ABCD-A1B1C1D1的棱長(zhǎng)為5.則直線BC到平面ADD1A1的距離為5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.根據(jù)如下的樣本數(shù)據(jù):
x1234567
y7.35.14.83.12.00.3-1.7
得到的回歸方程為y=bx+a,則( 。
A.a>0,b>0B.a>0,b<0C.a<0,b>0D.a<0,b<0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=logkx(k為常數(shù),k>0且k≠1),且數(shù)列{f(an)}是首項(xiàng)為4,公差為2的等差數(shù)列.
(1)求證:數(shù)列{an}是等比數(shù)列;
(2)若bn=an+f(an),當(dāng)$k=\frac{1}{{\sqrt{2}}}$時(shí),求數(shù)列{bn}的前n項(xiàng)和Sn的最小值;
(3)若cn=anlgan,問是否存在實(shí)數(shù)k,使得{cn}是遞增數(shù)列?若存在,求出k的范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知{an}為各項(xiàng)均為正整數(shù)的等差數(shù)列,a1+a27=572,且存在正整數(shù)m,使得a1,a14,am成等比數(shù)列,則所有滿足條件的{an}中,公差的最大值與最小值的差為21.

查看答案和解析>>

同步練習(xí)冊(cè)答案