設(shè)函數(shù)f(x)=x3+bx2+cx+d(x∈R)已知F(x)=f(x)-f′(x)是奇函數(shù),且F(1)=-11
(1)求b、c、d的值;
(2)求F(x)的單調(diào)區(qū)間與極值.
考點:利用導(dǎo)數(shù)研究函數(shù)的極值
專題:導(dǎo)數(shù)的綜合應(yīng)用
分析:(1)求函數(shù)的導(dǎo)數(shù),利用F(x)是奇函數(shù),且F(1)=-11.建立方程求b,c,d.
(2)利用導(dǎo)數(shù)求F(x)的單調(diào)區(qū)間與極值.
解答: 解:(1)f'(x)=3x2+2bx+c,
∴F(x)=f(x)-f′(x)=x3+(b-3)x2+(c-2b)x+d-c,
∵F(x)是奇函數(shù),
∴b-3=0,且d-c=0,即b=3,d=c.
∴F(x)=x3+(c-2b)x.
∵F(1)=-11,
∴F(1)=1+c-2b=-11,
即c-2b=-12,∴c=2b-12=-6,
又d=c,可得d=16.
綜上知,b=3,c=-6,d=-6.
(2)由(1)知f(x)=x3+3x2-6x-6.
f'(x)=3x2+6x-6,
∴F(x)=f(x)-f′(x)=x3-12x,
∴F′(x)=3x2-12=3(x+2)(x-2),
∴當(dāng)x<-2或x>2時,F(xiàn)′(x)>0,當(dāng)-2<x<2時,F(xiàn)′(x)<0,
∴F(x)的單調(diào)遞增區(qū)間是(-∞,-2)和(2,+∞),單調(diào)遞減區(qū)間是(-2,2).
∴當(dāng)x=-2時,F(xiàn)(x)極大值=F(-2)=(-2)3-12×(-2)=16,
當(dāng)x=2時,F(xiàn)(x)極小值=F(2)=23-12×2=-16.
∴函數(shù)單調(diào)遞增,無極值.
即函數(shù)F(x)的單調(diào)區(qū)間是R,無極值.
點評:本題主要考查導(dǎo)數(shù)的計算,以及利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和極值,考查學(xué)生的運算能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x
ax+b
(a、b為常數(shù),且a≠0)滿足f(4)=
4
3
,方程f(x)=x有唯一解.
(1)求函數(shù)f(x)的解析式;
(2)求f(f(-3))的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
2
|x-2|
x≠2
1,x=2
,若關(guān)于x的方程:[f(x)]3+b[f(x)]2+c[f(x)]+d=0有且僅有3個不同的實根x1,x2,x3,則x12+x22+x32的值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在(-1,1)上的奇函數(shù)f(x)在(0,1)上單調(diào)遞減,解不等式:f(x2-2)+f(3-2x)<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,下列表達式為常數(shù)的是( 。
A、sin(A+B)+sinC
B、cos(B+C)-cosA
C、tan
A+B
2
•tan
C
2
D、cos
B+C
2
•tan
A
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
1+lnx
x

(1)若函數(shù)f(x)在區(qū)間(t,t+
1
4
)上存在極值,求實數(shù)t的取值范圍;
(2)若對任意的x1,x2,當(dāng)x1>x2≥e時,恒有|f(x1)-f(x2)|≥k|
1
x1
-
1
x2
|,求實數(shù)k的取值范圍;
(3)是否存在實數(shù)m,n(m<n),當(dāng)x∈[m,n]時f(x)的值域為[m,n]?若存在,請給出證明;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求函數(shù)f(x)=
cos2x-sin2x
的定義域為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

中國航母“遼寧艦”是中國第一艘航母,“遼寧”號以4臺蒸汽輪機為動力,為保證航母的動力安全性,科學(xué)家對蒸汽輪機進行了技術(shù)改進,并增加了某項新技術(shù),該項新技術(shù)要進入試用階段前必須對其中的三項不同指標甲、乙、丙進行量化檢測.假設(shè)該項新技術(shù)的指標甲、乙、丙獨立通過檢測合格的概率分別為
3
4
2
3
、
1
2
,指標甲、乙、丙合格分別記為4分、2分、4分,某項指標不合格記為0分,各項指標檢測結(jié)果互不影響.
(1)求該項技術(shù)量化得分不低于8分的概率;
(2)記該項新技術(shù)的三個指標中被檢測合格的指標個數(shù)為隨機變量X,求X的分布列與數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
x2+2x+2,x≤0
-x2,x>0.
,若f(f(a))=5,則a=
 

查看答案和解析>>

同步練習(xí)冊答案