2.已知集合A={1,2,3},B={a+2,a},若A∩B=B,則∁AB={2}.

分析 由A與B的交集為B,得到B為A的子集,利用子集關(guān)系確定出a的值,進而確定出B,根據(jù)全集A求出B的補集即可.

解答 解:∵A={1,2,3},B={a+2,a},且A∩B=B,
∴B⊆A,
∴a=1,即B={1,3},
則∁AB={2},
故答案為:{2}

點評 此題考查了補集及其運算,熟練掌握補集的定義是解本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知命題p:命題“對角線互相垂直的四邊形是菱形”的否命題是真命題;命題q:“5<k<9”是方程$\frac{{x}^{2}}{9-k}$+$\frac{{y}^{2}}{k-5}$=1表示橢圓的充要條件.則下列命題為真命題的是(  )
A.¬p∨qB.¬p∧¬qC.p∧¬qD.p∧q

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=xlnx-bx+a(a,b∈R),g(x)=$\frac{1}{2}$x2+1.
(Ⅰ)討論f(x)在(1,+∞)上的單調(diào)性;
(Ⅱ)設(shè)b=1,直線l1是曲線y=f(x)在點P(x1,f(x1))處的切線,直線l2是曲線y=g(x)在點Q(x2,g(x2))(x2≥0)處的切線.若對任意的點Q,總存在點P,使得l1在l2的下方,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.設(shè)f(x)是定義在R上的周期為3的函數(shù),當(dāng)x∈[-2,1)時,f(x)=$\left\{\begin{array}{l}4{x^2}-2,-2≤x≤0\\ x,0<x<1\end{array}$,則f(f($\frac{21}{4}$))=(  )
A.-$\frac{3}{4}$B.$\frac{1}{4}$C.-$\frac{1}{4}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.在邊長為4的正△ABC中,D為BC的中點,則$\overrightarrow{DA}$•$\overrightarrow{AB}$=12.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.解下列三角方程:
(1)2sin2x+$\sqrt{3}$cosx+1=0.
(2)3sin2x+8sinxcosx-3cos2x=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.若a∈R,試比較a2+1與4(a-1)的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知回歸直線的方程為$\widehat{y}$=2-2.5x,則x=25時,y的估計值是-60.5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.下列各命題中為真命題的是(  )
A.?x∈R,x≥0B.如果x<5,則x<2C.?x∈R,x2≤-1D.?x∈R,x2+1≠0

查看答案和解析>>

同步練習(xí)冊答案