11.下列各命題中為真命題的是(  )
A.?x∈R,x≥0B.如果x<5,則x<2C.?x∈R,x2≤-1D.?x∈R,x2+1≠0

分析 分別根據(jù)全稱命題和特稱命題的定義進(jìn)行判斷即可.

解答 解:A.當(dāng)x=-1時(shí),x≥0不成立,故A錯(cuò)誤,
B.當(dāng)x=4時(shí),滿足x<5,但x<2不成立,故B錯(cuò)誤,
C.?x∈R,x2≥0,故C錯(cuò)誤,
D.?x∈R,x2+1≥1≠0,故D正確,
故選:D

點(diǎn)評(píng) 本題主要考查命題的真假判斷,涉及特稱命題和全稱命題的判斷,比較基礎(chǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.已知集合A={1,2,3},B={a+2,a},若A∩B=B,則∁AB={2}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.已知函數(shù)f(x)=x3+ax2-2x在區(qū)間[2,+∞)上是增函數(shù),則實(shí)數(shù)a的取值范圍是[-$\frac{5}{2}$,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知a,b∈R+,那么“l(fā)og${\;}_{\frac{1}{2}}$a>log${\;}_{\frac{1}{2}}$b”是“a<b”的( 。
A.充要條件B.充分不必要條件
C.必要不充分條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.設(shè)函數(shù)f(x)=|ex-a|+|$\frac{1}{e^x}$-1|,其中a,x∈R,e是自然對(duì)數(shù)的底數(shù),e=2.71828…
(Ⅰ)當(dāng)a=0時(shí),解不等式f(x)<2;
(Ⅱ)求函數(shù)f(x)的單調(diào)增區(qū)間;
(Ⅲ)設(shè)a≥$\frac{4}{3}$,討論關(guān)于x的方程f(f(x))=$\frac{1}{4}$的解的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.(1)已知z1,z2∈C,若|z1|=5,z2=3+4i,z1•$\overline{z_2}$是純虛數(shù),求z1
(2)在平行四邊形ABCD中,點(diǎn)A,B,C分別對(duì)應(yīng)復(fù)數(shù)2+i,4+3i,3+5i,求點(diǎn)D對(duì)應(yīng)的復(fù)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.如果a,b是異面直線,A∈a,B∈a,C∈b,D∈b,則由A,B,C,D這四個(gè)點(diǎn)中的任意三點(diǎn)最多可以確定4個(gè)平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.如圖,AB⊥BB1,AN∥BB1,AB=BC=AN=$\frac{1}{2}$BB1=4,四邊形BB1C1C為矩形,且平面BB1C1C⊥平面ABB1N.
(1)求證:BN⊥平面C1B1N;
(Ⅱ)設(shè)θ為直線C1N與平面CNB1所成的角,求sinθ的值;
(Ⅲ)設(shè)M為AB中點(diǎn),在BC邊上求一點(diǎn)P,使MP∥平面CNB1,求$\frac{BP}{PC}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.在等差數(shù)列{an}中,若a1+a4+a7=12,且a2+a5+a8=15,則a3+a6+a9=18.

查看答案和解析>>

同步練習(xí)冊(cè)答案