【題目】已知函數(shù)的圖象過點和點.

1)求函數(shù)的最大值與最小值;

2)將函數(shù)的圖象向左平移個單位后,得到函數(shù)的圖象;已知點,若函數(shù)的圖象上存在點,使得,求函數(shù)圖象的對稱中心.

【答案】1的最大值為2,最小值為;(2.

【解析】

1)由行列式運算求出,由函數(shù)圖象過兩點,求出,得函數(shù)解析式,化函數(shù)式為一個角的一個三角函數(shù)式,可求得最值;

2)由圖象變換寫出表達(dá)式,它的最大值是2,因此要滿足條件,只有圖象上,由此可求得,結(jié)合余弦函數(shù)的性質(zhì)可求得對稱中心.

1)易知,則由條件,得,

解得 .

故函數(shù)的最大值為2,最小值為

2)由(1)可知: .

于是,當(dāng)且僅當(dāng)的圖象上時滿足條件.

. ,得

. ,得

于是,函數(shù)圖象的對稱中心為:.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖:在四棱錐中, 平面,底面是正方形, .

(1)求異面直線所成角的大。ńY(jié)果用反三角函數(shù)值表示);

(2)求點、分別是棱的中點,求證: 平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)橢圓)的右焦點為,短軸的一個端點的距離等于焦距.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)設(shè)、是四條直線,所圍成的矩形在第一、第二象限的兩個頂點,是橢圓上任意一點,若,求證:為定值;

3)過點的直線與橢圓交于不同的兩點、,且滿足△與△的面積的比值為,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,以原點為極點,x軸的正半軸為極軸建立極坐標(biāo)系,已知曲線,直線l的參數(shù)方程為:t為參數(shù)),直線l與曲線C分別交于兩點.

1)寫出曲線C和直線l的普通方程;

2)若點,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知平面直角坐標(biāo)系中兩個定點,,如果對于常數(shù),在函數(shù)的圖像上有且只有6個不同的點,使得成立,那么的取值范圍是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)橢圓,定義橢圓C相關(guān)圓E:.若拋物線的焦點與橢圓C的右焦點重合,且橢圓C的短軸長與焦距相等.

1)求橢圓C及其相關(guān)圓E的方程;

2)過相關(guān)圓E上任意一點P作其切線l,若l 與橢圓交于A,B兩點,求證:為定值(為坐標(biāo)原點);

3)在(2)的條件下,求面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知是無窮等比數(shù)列,若的每一項都等于它后面所有項的倍,則實數(shù)的取值范圍是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,某污水處理廠要在一個矩形污水處理池(ABCD)的池底水平鋪設(shè)污水凈化管道(管道構(gòu)成Rt△FHE,H是直角項點)來處理污水.管道越長,污水凈化效果越好.設(shè)計要求管道的接口H是AB的中點,E,F(xiàn)分別落在線段BC,AD上.已知AB=20米,AD=米,記∠BHE=

(1)試將污水凈化管道的長度L表示為的函數(shù),并寫出定義域;

(2)當(dāng)取何值時,污水凈化效果最好?并求出此時管道的長度L.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在長方體中,AD=2,AB=AE=1,M為矩形AEHD內(nèi)的一點,如果∠MGF=MGH,MG和平面EFG所成角的正切值為那么點M到平面EFGH的距離是_____.

查看答案和解析>>

同步練習(xí)冊答案