【題目】設(shè)橢圓,定義橢圓C相關(guān)圓E:.若拋物線的焦點與橢圓C的右焦點重合,且橢圓C的短軸長與焦距相等.

1)求橢圓C及其相關(guān)圓E的方程;

2)過相關(guān)圓E上任意一點P作其切線l,若l 與橢圓交于A,B兩點,求證:為定值(為坐標原點);

3)在(2)的條件下,求面積的取值范圍.

【答案】1,;(2)證明見解析;(3.

【解析】

1)由題設(shè)知,又,從而可得,得橢圓方程,及相關(guān)圓方程;

2)對直線斜率進行討論,斜率不存在時,直接寫出直線方程,求出坐標,得

斜率存在時,設(shè)直線方程為,與橢圓方程聯(lián)立方程組,消元后得關(guān)于的二次方程,有韋達定理得,由直線與圓相切得關(guān)系,計算也可得,定值.

3)由于是“相關(guān)圓”半徑,所以,結(jié)合韋達定理求得,并得到其范圍,從而得面積的范圍.

1)拋物線的焦點是,與橢圓的一個焦點重合,∴,又,所以

橢圓方程為,“相關(guān)圓”的方程為

2)當直線斜率不存在時,不妨設(shè)其方程為,則,可得

當直線斜率存在時,設(shè)其方程為,設(shè),由,

,即,

由韋達定理得,

因為直線與圓相切,所以,整理得

所以,所以,,為定值.

3)由于,因此求面積的取值范圍只要求弦長的取值范圍.

當直線斜率不存在時,,

當直線斜率存在時,

,

時,0,

時,,

,即,當且僅當時,

所以的取值范圍是,

面積的取值范圍是

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓),過原點的兩條直線分別與交于點、、,得到平行四邊形.

1)當為正方形時,求該正方形的面積.

2)若直線關(guān)于軸對稱,上任意一點的距離分別為,當為定值時,求此時直線的斜率及該定值.

3)當為菱形,且圓內(nèi)切于菱形時,求滿足的關(guān)系式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的離心率為,,分別是橢圓的左右焦點,過點的直線交橢圓于,兩點,且的周長為12

(Ⅰ)求橢圓的方程

(Ⅱ)過點作斜率為的直線與橢圓交于兩點,試判斷在軸上是否存在點,使得是以為底邊的等腰三角形若存在,求點橫坐標的取值范圍,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

1)若為單調(diào)函數(shù),求a的取值范圍;

2)若函數(shù)僅一個零點,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)的圖象過點和點.

1)求函數(shù)的最大值與最小值;

2)將函數(shù)的圖象向左平移個單位后,得到函數(shù)的圖象;已知點,若函數(shù)的圖象上存在點,使得,求函數(shù)圖象的對稱中心.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓,線段、都是圓的弦,且垂直且相交于坐標原點,如圖所示,設(shè)△的面積為,設(shè)△的面積為.

1)設(shè)點的橫坐標為,用表示;

2)求證:為定值;

3)用、、表示出,試研究是否有最小值,如果有,求出最小值,并寫出此時直線的方程;若沒有最小值,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】汽車的燃油效率是指汽車每消耗1升汽油行駛的里程,下圖描述了甲、乙、丙三輛汽車在不同速度下的燃油效率情況. 下列敘述中正確的是( )

A. 消耗1升汽油,乙車最多可行駛5千米

B. 以相同速度行駛相同路程,三輛車中,甲車消耗汽油最多

C. 甲車以80千米/小時的速度行駛1小時,消耗10升汽油

D. 某城市機動車最高限速80千米/小時. 相同條件下,在該市用丙車比用乙車更省油

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知頂點為原點的拋物線C的焦點與橢圓的上焦點重合,且過點.

1)求橢圓的標準方程;

(2)若拋物線上不同兩點AB作拋物線的切線,兩切線的斜率,若記AB的中點的橫坐標為m,AB的弦長,并求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)的圖象的頂點坐標為,且過坐標原點O,數(shù)列的前n項和為,點()在二次函數(shù)的圖象上.

(1)求數(shù)列的表達式;

(2)設(shè)(),數(shù)列的前n項和為,若恒成立,求實數(shù)m的取值范圍;

(3)在數(shù)列中是否存在這樣的一些項,,,,…,…(),這些項能夠依次構(gòu)成以為首項,q(,)為公比的等比數(shù)列?若存在,寫出關(guān)于k的表達式;若不存在,說明理由.

查看答案和解析>>

同步練習冊答案