【題目】在直角坐標(biāo)系中,以原點為極點,x軸的正半軸為極軸建立極坐標(biāo)系,已知曲線,直線l的參數(shù)方程為:t為參數(shù)),直線l與曲線C分別交于兩點.

1)寫出曲線C和直線l的普通方程;

2)若點,求的值.

【答案】(1);(2)

【解析】

1)將兩邊平方,用代入,即可求出曲線直角坐標(biāo)方程;參數(shù)方程用代入法消去參數(shù),可求得直線的普通方程;

2)直線化為過具有幾何意義的參數(shù)方程,代入曲線的方程,設(shè)兩點對應(yīng)的參數(shù)分別為,根據(jù)韋達(dá)定理,得出的關(guān)系式,結(jié)合參數(shù)幾何意義,將所求的量用表示,即可求解.

1,

.

2)注意到在直線l上,直線傾斜角為,

, ,

解得直線參數(shù)方程為為參數(shù)),

聯(lián)立C的直角坐標(biāo)方程與l的參數(shù)方程,

整理得,設(shè)方程的解為

,異號.

不妨設(shè),,

.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】羽毛球比賽中,首局比賽由裁判員采用拋球的方法決定誰先發(fā)球,在每回合爭奪中,贏方得1分且獲得發(fā)球權(quán).每一局中,獲勝規(guī)則如下:①率先得到21分的一方贏得該局比賽;②如果雙方得分出現(xiàn),需要領(lǐng)先對方2分才算該局獲勝;③如果雙方得分出現(xiàn),先取得30分的一方該局獲勝.現(xiàn)甲、乙兩名運動員進(jìn)行對抗賽,在每回合爭奪中,若甲發(fā)球時,甲得分的概率為;乙發(fā)球時,甲得分的概率為

(Ⅰ)若,記甲以贏一局的概率為,試比較的大。

(Ⅱ)根據(jù)對以往甲、乙兩名運動員的比賽進(jìn)行數(shù)據(jù)分析,得到如下列聯(lián)表部分?jǐn)?shù)據(jù).若不考慮其它因素對比賽的影響,并以表中兩人發(fā)球時甲得分的頻率作為,的值.

甲得分

乙得分

總計

甲發(fā)球

50

100

乙發(fā)球

60

90

總計

190

①完成列聯(lián)表,并判斷是否有95%的把握認(rèn)為比賽得分與接、發(fā)球有關(guān)?

②已知在某局比中,雙方戰(zhàn)成,且輪到乙發(fā)球,記雙方再戰(zhàn)回合此局比賽結(jié)束,求的分布列與期望.

參考公式:,其中

臨界值表供參考:

0.15

0.10

0.05

0.010

0.001

2.072

2.706

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知橢圓過點,且離心率.

1)求橢圓的方程;

2)直線的斜率為,直線與橢圓交于兩點,求的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知圓錐的頂點為S,底面圓O的兩條直徑分別為AB和CD,且AB⊥CD,若平面平面.現(xiàn)有以下四個結(jié)論:

①AD∥平面SBC;

;

③若E是底面圓周上的動點,則△SAE的最大面積等于△SAB的面積;

與平面SCD所成的角為45°.

其中正確結(jié)論的序號是__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱臺中,,G,H分別為,上的點,平面平面,,.

1)證明:平面平面;

2)若,,求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)若的最大值為,求的值;

2)若存在實數(shù),使得,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在極坐標(biāo)系中,曲線的極坐標(biāo)方程為,以極點為原點,極軸為軸的非負(fù)半軸建立平面直角坐標(biāo)系,直線的參數(shù)方程為為參數(shù), ).

(1)求曲線的直角坐標(biāo)方程和直線的普通方程;

(2)若曲線上的動點到直線的最大距離為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)fx則下列結(jié)論錯誤的是(

A.函數(shù)fx)的值域為RB.函數(shù)f|x|)為偶函數(shù)

C.函數(shù)fx)為奇函數(shù)D.函數(shù)fx)是定義域上的單調(diào)函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某部影片的盈利額(即影片的票房收入與固定成本之差)記為,觀影人數(shù)記為,其函數(shù)圖象如圖(1)所示.由于目前該片盈利未達(dá)到預(yù)期,相關(guān)人員提出了兩種調(diào)整方案,圖(2)、圖(3)中的實線分別為調(diào)整后的函數(shù)圖象.

給出下列四種說法:

①圖(2)對應(yīng)的方案是:提高票價,并提高成本;

②圖(2)對應(yīng)的方案是:保持票價不變,并降低成本;

③圖(3)對應(yīng)的方案是:提高票價,并保持成本不變;

④圖(3)對應(yīng)的方案是:提高票價,并降低成本.

其中,正確的說法是____________.(填寫所有正確說法的編號)

查看答案和解析>>

同步練習(xí)冊答案