2.已知一正四棱錐的底邊長(zhǎng)為4cm,高為3cm,求其全面積和體積.

分析 做出棱錐的高和斜高,根據(jù)勾股定理計(jì)算斜高,代入公式計(jì)算面積和體積.

解答 解:過棱錐的頂點(diǎn)P作棱錐的高PO,則O為底面ABCD的中心,
過O作OE⊥CD,垂足為E,則E為CD的中點(diǎn),
∴OE=$\frac{1}{2}$BC=2,OP=3,∴PE=$\sqrt{13}$.
∴棱錐的全面積為S=42+4×$\frac{1}{2}$×4×$\sqrt{13}$=16+8$\sqrt{13}$.
棱錐的體積V=$\frac{1}{3}$×42×3=16.

點(diǎn)評(píng) 本題考查了棱錐的結(jié)構(gòu)特征,表面積和體積計(jì)算,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知復(fù)數(shù)z滿足$\frac{z}{4+2i}$=i,i是虛數(shù)單位,則在復(fù)平面內(nèi)z對(duì)應(yīng)的點(diǎn)在( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.函數(shù)f(x)=x-3+log3x的零點(diǎn)所在區(qū)間是( 。
A.(0,1)B.(1,2)C.(2,3)D.(3,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.用g(n)表示自然數(shù)n的所有因數(shù)中最大的那個(gè)奇數(shù),例:9的因數(shù)有1,3,9,g(9)=9,10的因數(shù)有1,2,5,10,g(10)=5,那么g(1)+g(2)+g(3)+…+g(22016-1)=( 。
A.$\frac{4}{3}$×42015+$\frac{1}{3}$B.$\frac{4}{3}$×42015-$\frac{1}{3}$C.$\frac{4}{3}$×42016+$\frac{1}{3}$D.$\frac{4}{3}$×42016+$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.當(dāng)α∈(0,$\frac{π}{2}$)時(shí),求證:sinα<α<tanα.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.設(shè)Sn是等差數(shù)列{an}的前n項(xiàng)和,若$\frac{a_3}{a_6}=\frac{11}{5}$,則$\frac{S_5}{{{S_{11}}}}$=( 。
A.$\frac{11}{5}$B.1C.$\frac{5}{11}$D.${(\frac{11}{5})^2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知f(x)=x(x-1)(x-2)…(x-10),則f′(4)=17280.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.在平行六面體ABCD-EFGH中,若$\overrightarrow{AG}$=x$\overrightarrow{AB}$-2y$\overrightarrow{BC}$+3z$\overrightarrow{DH}$,則x+y+z等于(  )
A.$\frac{7}{6}$B.$\frac{2}{3}$C.$\frac{5}{6}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.到F(2,0)和y軸的距離相等的動(dòng)點(diǎn)的軌跡方程是y2=4(x-1).

查看答案和解析>>

同步練習(xí)冊(cè)答案